首页> 外文期刊>Signal processing >Analysis of a sequential Monte Carlo method for optimization in dynamical systems
【24h】

Analysis of a sequential Monte Carlo method for optimization in dynamical systems

机译:动力学系统优化的顺序蒙特卡罗方法分析

获取原文
获取原文并翻译 | 示例

摘要

We investigate a recently proposed sequential Monte Carlo methodology for recursively tracking the minima of a cost function that evolves with time. These methods, subsequently referred to as sequential Monte Carlo minimization (SMCM) procedures, have an algorithmic structure similar to particle filters: they involve the generation of random paths in the space of the signal of interest (Sol), the stochastic selection of the fittest paths and the ranking of the survivors according to their cost. In this paper, we propose an extension of the original SMCM methodology (that makes it applicable to a broader class of cost functions) and introduce an asymptotic-convergence analysis. Our analytical results are based on simple induction arguments and show how the Sol-estimates computed by a SMCM algorithm converge, in probability, to a sequence of minimizers of the cost function. We illustrate these results by means of two computer simulation examples.
机译:我们调查了最近提出的顺序蒙特卡洛方法,用于递归跟踪随时间变化的成本函数的最小值。这些方法(后来称为顺序蒙特卡罗最小化(SMCM)过程)具有类似于粒子滤波器的算法结构:它们涉及在目标信号(Sol)空间中随机路径的产生,适度的随机选择路径和幸存者根据其成本排名。在本文中,我们提出了对原始SMCM方法的扩展(使其适用于更广泛的成本函数类),并介绍了渐近收敛分析。我们的分析结果基于简单的归纳论证,并显示了SMCM算法计算出的Sol估计如何概率性地收敛到成本函数的最小化序列。我们通过两个计算机仿真示例来说明这些结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号