首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking
【24h】

Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking

机译:顺序蒙特卡洛目标跟踪中动力学模型的进化优化

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new method for the online parameter optimization of various models used to represent the target dynamics in particle filters. The optimization is performed with an evolutionary strategy algorithm, by using the performance of the particle filter as a basis for the objective function. Two different approaches to forming the objective function are presented: the first assumes knowledge of the true source position during the optimization, and the second uses the position estimates from the particle filter to form an estimate of the current ground-truth data. The new algorithm has low computational complexity and is suitable for real-time implementation. A simple and intuitive real-world application of acoustic source localization and tracking is used to highlight the performance of the algorithm. Results show that the algorithm converges to an optimum tracker for any type of dynamics model that is capable of representing the target dynamics.
机译:本文介绍了一种用于在线模型优化各种模型的新方法,这些模型用于表示粒子过滤器中的目标动力学。通过使用粒子滤波器的性能作为目标函数的基础,使用进化策略算法进行优化。提出了两种不同的形成目标函数的方法:第一种假设在优化过程中了解真实的源位置,第二种方法使用粒子滤波器的位置估计值形成当前地面数据的估计值。新算法计算复杂度低,适合实时实现。声源定位和跟踪的一个简单直观的现实世界应用程序用于突出显示算法的性能。结果表明,对于能够表示目标动力学的任何类型的动力学模型,该算法均收敛于最优跟踪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号