首页> 外文期刊>Signal processing >Optimal and robust waveform design for MIMO radars in the presence of clutter
【24h】

Optimal and robust waveform design for MIMO radars in the presence of clutter

机译:杂波情况下MIMO雷达的最佳鲁棒波形设计

获取原文
获取原文并翻译 | 示例

摘要

Waveform design for target identification and classification in MIMO radar systems has been studied in several recent works. While the previous works assumed that the noise was independent of the transmission signals, here we extend the results to the signal dependent noise (clutter). We consider two scenarios. In the first scenario it is assumed that different transmit antennas see uncorrelated aspects of the target. In the second scenario, we consider the correlated target. As clutter is dependent to signal, target estimation error cannot vanish only by increasing the transmission power. It can be shown that in the second scenario, MIMO radar receiver can nullify the clutter subspace. Thus, in the second scenario, target estimation error tends to zero if the transmission power tends to infinity. We consider waveform design problem for these scenarios based on MMSE and Ml criteria. Like previous works, we find that these criteria lead to the same solution. Our problems lead to the convex optimization problems, which can be efficiently solved through tractable numerical methods. Closed-form solutions are also developed for this SDP problem in two cases. In the first case, target and clutter covariance matrices are jointly diagonalizable and in the second, signal to noise ratio (SNR) is assumed to be sufficiently high. We also present two suboptimal formulations which require less knowledge of the statistical model of the target. In the first one the robust waveforms are computed by minimizing the estimation error of the worst-case target realization and in the second, target estimation error of the scaled least square (SLS) estimator is minimized.
机译:在最近的一些工作中已经研究了用于MIMO雷达系统中目标识别和分类的波形设计。尽管先前的工作假设噪声与传输信号无关,但在这里我们将结果扩展到与信号相关的噪声(杂波)。我们考虑两种情况。在第一种情况下,假定不同的发射天线看到目标的不相关方面。在第二种情况下,我们考虑相关目标。由于杂波取决于信号,因此仅通过增加发射功率就无法消除目标估计误差。可以证明,在第二种情况下,MIMO雷达接收机可以使杂波子空间无效。因此,在第二种情况下,如果传输功率趋于无穷大,则目标估计误差趋于零。我们考虑基于MMSE和M1标准的这些方案的波形设计问题。像以前的作品一样,我们发现这些标准导致了相同的解决方案。我们的问题导致凸优化问题,可以通过易处理的数值方法有效地解决。在两种情况下,也针对此SDP问题开发了闭式解决方案。在第一种情况下,目标协方差和杂波协方差矩阵共同对角化,在第二种情况下,信噪比(SNR)假定足够高。我们还提出了两个次优的公式,它们需要更少的目标统计模型知识。在第一个中,通过最小化最坏情况下目标实现的估计误差来计算鲁棒波形,在第二个中,将缩放的最小二乘(SLS)估计器的目标估计误差最小化。

著录项

  • 来源
    《Signal processing》 |2010年第4期|1103-1117|共15页
  • 作者

    T. Naghibi; M. Namvar; F. Behnia;

  • 作者单位

    Advanced Communications Research Institute, Department of Electrical Engineering, Sharif University of Technology, Iran;

    Advanced Communications Research Institute, Department of Electrical Engineering, Sharif University of Technology, Iran;

    Advanced Communications Research Institute, Department of Electrical Engineering, Sharif University of Technology, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RADAR; MIMO systems; convex optimization; CSLS estimator;

    机译:雷达;MIMO系统;凸优化CSLS估算器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号