首页> 外文期刊>Signal processing >Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal
【24h】

Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal

机译:多通道ARMA信号的自调整分布式测量融合Kalman估计器

获取原文
获取原文并翻译 | 示例

摘要

For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where the consistent fused estimates of the model parameters and noise variances are obtained by the multi-dimension recursive instrumental variable (RIV) algorithm, correlation method and Gevers-Wouters algorithm with a dead band. Substituting these estimates into the optimal distributed measurement fusion Kalman signal estimator, a self-tuning distributed measurement fusion Kalman signal estimator is presented. Its convergence is proved by the dynamic error system analysis (DESA) method, so that it has asymptotical global optimality. In order to reduce computational load, a fast recursive inversion algorithm for a high-dimension matrix is presented by the inversion formula of partitioned matrix. Especially, when the process and measurement noise variance matrices are all diagonal matrices, the inversion formula of a high-dimension matrix is presented, which extends the formula of the inverse of Pei-Radman matrix. Applying the proposed inversion algorithm, the computation of the fused measurement and fused noise variance is simplified and their computational burden is reduced. A simulation example shows effectiveness of the proposed method.
机译:对于具有白色测量噪声和常见干扰测量白噪声的多传感器多通道自回归移动平均(ARMA)信号,当模型参数和噪声方差都未知时,提出了一种多阶段信息融合识别方法,其中通过多维递归工具变量(RIV)算法,相关方法和具有死区的Gevers-Wouters算法获得模型参数和噪声方差的一致融合估计。将这些估计值代入最佳分布式测量融合卡尔曼信号估计器中,提出了一种自调谐分布式测量融合卡尔曼信号估计器。通过动态误差系统分析(DESA)方法证明了其收敛性,因此具有渐近全局最优性。为了减少计算量,通过划分矩阵的反演公式提出了一种高维矩阵的快速递归反演算法。特别是当过程和测量噪声方差矩阵都是对角矩阵时,提出了高维矩阵的反演公式,扩展了Pei-Radman矩阵反矩阵的公式。应用本文提出的反演算法,简化了融合测量和融合噪声方差的计算,减轻了计算量。仿真实例表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号