首页> 外文期刊>Signal processing >Using Bayesian inference for the design of FIR filters with signed power-of-two coefficients
【24h】

Using Bayesian inference for the design of FIR filters with signed power-of-two coefficients

机译:使用贝叶斯推断设计带符号二乘幂系数的FIR滤波器

获取原文
获取原文并翻译 | 示例

摘要

The design approach presented in this paper applies Bayesian inference to the design of finite impulse response (FIR) filters with signed power-of-two (SPoT) coefficients. Given a desired frequency magnitude response specified by upper and lower bounds in decibels, Bayesian parameter estimation and model selection are adapted to produce a distribution of potential designs, all of which perform at or close to the specified standard. In the process, having incorporated prior information such as the maximum acceptable number of SPoT terms and filter length, and the practical design requirement to use the fewest bits possible, the total number of bits, filter taps and SPoT terms, and the filter length required in a design are automatically determined. The produced design candidates have design complexity appropriate to the design specifications and requirements, as designs with higher design complexity than required are rendered less probable by the embedded Ockham's razor. This innate ability is a prominent advantage that the newly developed framework possesses over many optimization based techniques as it leads to designs that require fewer SPoT terms and filter taps. Most importantly, it avoids the intricacy, arduousness and rigorousness involved in devising an appropriate scheme for balancing design performance against design complexity.
机译:本文提出的设计方法将贝叶斯推理应用于具有符号二乘幂(SPoT)系数的有限脉冲响应(FIR)滤波器的设计。给定由分贝的上限和下限指定的所需频率幅度响应,贝叶斯参数估计和模型选择适用于生成潜在设计的分布,所有这些设计均以指定标准或接近指定标准的方式执行。在此过程中,结合了先验信息,例如最大可接受的SPoT项数和滤波器长度,以及使用尽可能少的位数的实际设计要求,位数,滤波器抽头和SPoT项的总数以及所需的滤波器长度在设计中是自动确定的。产生的候选设计具有适合于设计规范和要求的设计复杂度,因为嵌入式Ockham剃须刀使设计复杂度超出要求的设计不太可能出现。这种先天的能力是新开发的框架具有优于许多基于优化的技术的显着优势,因为它导致设计需要更少的SPoT项和滤波器抽头。最重要的是,它避免了设计平衡设计性能和设计复杂性的适当方案时所涉及的复杂性,艰巨性和严格性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号