首页> 外文期刊>Signal processing >Automated cell nuclei segmentation for breast fine needle aspiration cytology
【24h】

Automated cell nuclei segmentation for breast fine needle aspiration cytology

机译:自动细胞核分割,用于乳腺细针穿刺细胞学检查

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer detection and segmentation of cytological images is the standard clinical practice for the diagnosis and prognosis of breast cancer. This paper presents a fully automated method for cell nuclei detection and segmentation in breast cytological images. The images are enhanced with histogram stretching and contrast-limited adaptive histogram equalization (CLAHE). The locations of the cell nuclei in the image are detected with circular Hough transform (CHT) and local maximum filtering. The elimination of false positive findings (noisy circles and blood cells) is achieved using Otsu's thresholding method and fuzzy C-means clustering technique. The segmentation of the nuclei boundaries is accomplished with the application of the marker controlled watershed transform in the gradient image, using the nuclei markers extracted in the detection step. The proposed method is evaluated using 92 breast cytological images containing 11,502 cell nuclei. Experimental evidence shows that the proposed method has very effective results even in the case of images with high degree of blood cells, noisy circles.
机译:乳腺癌检测和细胞学图像分割是诊断和预后乳腺癌的标准临床实践。本文提出了一种用于乳腺细胞学图像中细胞核检测和分割的全自动方法。通过直方图拉伸和对比度限制的自适应直方图均衡(CLAHE)可以增强图像。通过循环霍夫变换(CHT)和局部最大滤波来检测图像中细胞核的位置。使用Otsu的阈值化方法和模糊C均值聚类技术可以消除假阳性结果(嘈杂的圆圈和血细胞)。使用在检测步骤中提取的核标记,在梯度图像中应用标记控制的分水岭变换,即可完成对核边界的分割。使用包含11502个细胞核的92个乳腺细胞学图像对提出的方法进行了评估。实验证据表明,所提出的方法即使在血细胞度高,圆圈嘈杂的图像中也具有非常有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号