首页> 外文期刊>Signal processing >Compressed domain based pornographic image recognition using multi-cost sensitive decision trees
【24h】

Compressed domain based pornographic image recognition using multi-cost sensitive decision trees

机译:使用多成本敏感决策树的基于压缩域的色情图像识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel and effective pornographic image recognition method is proposed. Contributions of this paper include two aspects. (1) Due to the fact that the images are mostly stored and transmitted with JPEG compressed format on Internet, feature extraction is directly performed in the compressed domain. The exacted features include those derived from skin color regions, the results of image retrieval, human face and region of interest, as well as the global features of color and texture. (2) Data mining method is employed to search for the potential decision rules from large-scale image feature sets. Taken the misclassification cost and test cost into account, multi-cost sensitive decision tree is constructed first to improve the recognition speed and accuracy. Furthermore, the concept of pornography degree is introduced into the decision rules, which is output as the recognition results to represent the probability of the image being judged as pornographic. Experimental results show that, the recognition speed of the proposed method is almost three times faster than the classical pixel domain-based recognition method, and the recognition accuracy is also higher in terms of True Alarm Rate (TPR) and False Alarm Rate (FPR).
机译:本文提出了一种新颖有效的色情图像识别方法。本文的贡献包括两个方面。 (1)由于大多数图像是在Internet上以JPEG压缩格式存储和传输的,因此在压缩域中直接执行特征提取。精确的特征包括那些来自肤色区域,图像检索结果,人脸和关注区域的特征,以及颜色和纹理的整体特征。 (2)采用数据挖掘方法从大规模图像特征集中搜索潜在的决策规则。考虑到分类错误成本和测试成本,首先构建了多成本敏感决策树,以提高识别速度和准确性。此外,将色情程度的概念引入决策规则,将其作为识别结果输出,以表示图像被判定为色情的可能性。实验结果表明,该方法的识别速度几乎是传统的基于像素域的识别方法的三倍,并且在真警率(TPR)和误警率(FPR)方面的识别精度也更高。 。

著录项

  • 来源
    《Signal processing》 |2013年第8期|2126-2139|共14页
  • 作者单位

    Signal and Information Processing Laboratory, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;

    Signal and Information Processing Laboratory, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;

    Signal and Information Processing Laboratory, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;

    Signal and Information Processing Laboratory, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressed domain; Pornographic image recognition; Multi-cost sensitive decision tree; Data mining;

    机译:压缩域;色情图像识别;多成本敏感决策树;数据挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号