首页> 外文期刊>Signal processing >Gaussian filtering and smoothing for continuous-discrete dynamic systems
【24h】

Gaussian filtering and smoothing for continuous-discrete dynamic systems

机译:连续离散动态系统的高斯滤波和平滑

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with Bayesian optimal filtering and smoothing of non-linear continuous-discrete state space models, where the state dynamics are modeled with non-linear Ito-type stochastic differential equations, and measurements are obtained at discrete time instants from a non-linear measurement model with Gaussian noise. We first show how the recently developed sigma-point approximations as well as the multi-dimensional Gauss-Hermite quadrature and cubature approximations can be applied to classical continuous-discrete Gaussian filtering. We then derive two types of new Gaussian approximation based smoothers for continuous-discrete models and apply the numerical methods to the smoothers. We also show how the latter smoother can be efficiently implemented by including one additional cross-covariance differential equation to the filter prediction step. The performance of the methods is tested in a simulated application.
机译:本文涉及非线性连续离散状态空间模型的贝叶斯最优滤波和平滑处理,其中状态动力学是使用非线性Ito型随机微分方程建模的,并且在离散时刻从非瞬时状态获得测量值。高斯噪声的线性测量模型。我们首先显示最近开发的sigma-point逼近以及多维Gauss-Hermite正交和quature逼近如何可以应用于经典的连续离散高斯滤波。然后,我们为连续离散模型推导两种新的基于高斯近似的平滑器,并将数值方法应用于平滑器。我们还展示了如何通过在滤波器预测步骤中包括一个附加的互协方差微分方程来有效地实现后者的平滑器。该方法的性能在模拟应用程序中进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号