首页> 外文期刊>IEEE signal processing letters >Accurate Smoothing for Continuous-Discrete Nonlinear Systems With Non-Gaussian Noise
【24h】

Accurate Smoothing for Continuous-Discrete Nonlinear Systems With Non-Gaussian Noise

机译:具有非高斯噪声的连续离散非线性系统的精确平滑

获取原文
获取原文并翻译 | 示例

摘要

In this letter, an accurate Gaussian sum-smoothing approach is derived for the continuous-discrete systems, where the dynamics can be modeled with nonlinear Ito-type stochastic differential equations and the measurements are obtained at discrete sampling times with non-Gaussian noise. The proposed smoothing method is derived by applying a bank of parallel accurate continuous-discrete extended-cubature Kalman filters used in the classical Gaussian state estimation to approximate the non-Gaussian estimation densities as a finite number of weighted sums of Gaussian densities. The performances of the proposed method are compared with the recently presented filters based on the maximum correntropy criterion in a simulated application and the numerical results show that the new approach is more accurate and robust than others.
机译:在这封信中,为连续离散系统导出了一种精确的高斯求和平滑方法,其中可以使用非线性Ito型随机微分方程对动力学进行建模,并在不带高斯噪声的离散采样时间获得测量值。提出的平滑方法是通过应用在经典高斯状态估计中使用的一组平行精确连续离散扩展培养卡尔曼滤波器将非高斯估计密度近似为有限数量的高斯密度加权和而得出的。将该方法的性能与最近提出的基于最大熵准则的滤波器在仿真应用中进行了比较,数值结果表明,该新方法比其他方法更准确,更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号