首页> 外文期刊>Signal processing >Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter
【24h】

Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter

机译:利用平滑可变结构滤波器的抖振效应的卡尔曼滤波策略

获取原文
获取原文并翻译 | 示例

摘要

The Kalman filter (KF) remains the most popular method for linear state and parameter estimation. Various forms of the KF have been created to handle nonlinear estimation problems, including the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). The robustness and stability of the EKF and UKF can be improved by combining it with the recently proposed smooth variable structure filter (SVSF) concept. The SVSF is a predictor-corrector method based on sliding mode concepts, where the gain is calculated based on a switching surface. A phenomenon known as chattering is present in the SVSF, which may be used to determine changes in the system. In this paper, the concept of SVSF chattering is introduced and explained, and is used to determine the presence of modeling uncertainties. This knowledge is used to create combined filtering strategies in an effort to improve the overall accuracy and stability of the estimates. Simulations are performed to compare and demonstrate the accuracy, robustness, and stability of the Kalman-based filters and their combinations with the SVSF.
机译:卡尔曼滤波器(KF)仍然是用于线性状态和参数估计的最流行方法。已经创建了各种形式的KF来处理非线性估计问题,包括扩展卡尔曼滤波器(EKF)和无味卡尔曼滤波器(UKF)。通过将EKF和UKF与最近提出的平滑可变结构滤波器(SVSF)概念结合起来,可以提高其鲁棒性和稳定性。 SVSF是基于滑模概念的预测器-校正器方法,其中,增益是基于开关表面计算的。 SVSF中存在一种称为震颤的现象,可以用来确定系统中的变化。本文介绍并解释了SVSF颤振的概念,并将其用于确定模型不确定性的存在。该知识用于创建组合的过滤策略,以提高估计的整体准确性和稳定性。进行仿真以比较和证明基于Kalman的滤波器及其与SVSF的组合的准确性,鲁棒性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号