首页> 外文期刊>Signal processing >Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling
【24h】

Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling

机译:非平稳信号表示的自适应功能系列TARMA模型及其在机械随机振动建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

Functional series time-dependent autoregressive moving average (FS-TARMA) models are characterized by time varying parameters which are projected onto selected functional subspaces. They offer parsimonious and effective representations for a wide range of non-stationary random signals where the evolution in the dynamics is of deterministic nature. Yet, their identification remains challenging, with a main difficulty pertaining to the determination of the functional subspaces. In this study the problem is overcome via the introduction of the novel class of adaptable FS-TARMA (AFS-TARMA) models, that is models with basis functions properly parametrized and directly estimated based on the modeled signal. Model identification is effectively dealt with through a separable nonlinear least squares (SNLS) based estimation procedure that decomposes the problem into two simpler subproblems: a quadratic one and a reduced-dimensionality non-quadratic constrained optimization one. The identification method also includes procedures for model order and subspace dimensionality selection. Its effectiveness is demonstrated via a Monte Carlo study, plus its application to the modeling of the non-stationary random mechanical vibration of an experimental pick-and-place mechanism. Comparisons with conventional FS-TARMA modeling, as well as additional alternatives, are used to illustrate the method's performance and potential advantages.
机译:功能序列随时间变化的自回归移动平均值(FS-TARMA)模型的特征在于时变参数,这些参数被投影到选定的功能子空间上。它们为各种非平稳随机信号提供了简约有效的表示形式,其中动力学的变化具有确定性。然而,它们的识别仍然具有挑战性,主要困难在于确定功能子空间。在这项研究中,通过引入新的一类适应性FS-TARMA(AFS-TARMA)模型克服了这一问题,该模型具有经过适当参数化并根据建模信号直接估算的基本函数的模型。通过基于可分离的非线性最小二乘(SNLS)的估计程序有效地处理了模型识别,该估计程序将问题分解为两个更简单的子问题:一个二次子问题和一个降维非二次约束优化子问题。识别方法还包括模型顺序和子空间维数选择的过程。通过蒙特卡洛研究证明了其有效性,并将其应用于实验取放机构的非平稳随机机械振动的建模。与常规FS-TARMA建模的比较以及其他替代方法用于说明该方法的性能和潜在优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号