首页> 外文期刊>Mechanical systems and signal processing >Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models - A critical survey
【24h】

Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models - A critical survey

机译:通过功能序列时间相关的ARMA(FS-TARMA)模型进行非平稳随机振动建模和分析-关键调查

获取原文
获取原文并翻译 | 示例

摘要

A critical overview of non-stationary random vibration modelling and analysis via the class of Functional Series Time-dependent AutoRegressive Moving Average (FS-TARMA) models is presented. FS-TARMA models feature deterministic parameter evolution and have been shown to effectively represent non-stationary random vibration in various engineering applications. Their conventional and adaptable forms are reviewed, along with pertinent identification methods. The subproblems of parameter estimation, model structure (including basis function) selection, and model validation are discussed, and recent developments are outlined. The relative performance characteristics of the various identification methods are illustrated via Monte Carlo experiments using two different, simulated, random vibration signals. Through these, the potential of functional series models for elegant and effective modelling and analysis of non-stationary random vibration are further revealed.
机译:通过功能系列随时间变化的自回归移动平均线(FS-TARMA)模型,对非平稳随机振动建模和分析进行了概述。 FS-TARMA模型具有确定性的参数演化功能,并已被证明可有效代表各种工程应用中的非平稳随机振动。回顾了它们的常规形式和适用形式以及相关的识别方法。讨论了参数估计,模型结构(包括基函数)选择和模型验证的子问题,并概述了最新进展。通过使用两个不同的模拟随机振动信号的蒙特卡洛实验说明了各种识别方法的相对性能特征。通过这些,进一步揭示了功能系列模型对非平稳随机振动进行优雅,有效建模和分析的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号