首页> 外文期刊>Signal processing >Hierarchical sparse representation based Multi-Instance Semi-Supervised Learning with application to image categorization
【24h】

Hierarchical sparse representation based Multi-Instance Semi-Supervised Learning with application to image categorization

机译:基于分层稀疏表示的多实例半监督学习及其在图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Recent studies have shown that sparse representation (SR) can deal well with many computer vision problems. In this paper, we extend a hierarchical sparse representation algorithm into Multi-Instance Semi-Supervised Learning (MISSL) problem. Specifically, at the instance level, after investigating the properties of true positive instances in depth, we propose a novel instance disambiguation strategy based on sparse representation that can identify the instance confidence value in both positive and unlabeled bags more effectively. At the bag level, in contrast to the traditional k-NN or ε-graph construction methods used in the graph-based semi-supervised learning settings, we propose a weighted multi-instance kernel and a corresponding kernel sparse representation method for robust l~1-graph construction. The improved l~1-graph that encodes the multi-instance properties can be utilized in the manifold regularization framework for the label propagation. Experimental results on different image data sets have demonstrated that the proposed algorithm outperforms existing multi-instance learning (MIL) algorithms, as well as the MISSL algorithms with the application to image categorization task.
机译:最近的研究表明,稀疏表示(SR)可以很好地解决许多计算机视觉问题。在本文中,我们将分层稀疏表示算法扩展到多实例半监督学习(MISSL)问题中。具体而言,在实例级别上,在深入研究了真正阳性实例的属性后,我们提出了一种基于稀疏表示的新颖实例消歧策略,该策略可以更有效地识别阳性和未标记袋子中的实例置信度值。在袋级,与基于图的半监督学习设置中使用的传统k-NN或ε-图构造方法相反,我们提出了一种加权多实例核和相应的核稀疏表示方法来增强鲁棒性。 1图构造。可以在流形正则化框架中利用编码多实例属性的改进的1-1图来进行标签传播。在不同图像数据集上的实验结果表明,所提出的算法优于现有的多实例学习(MIL)算法,以及在图像分类任务中应用的MISSL算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号