首页> 外文期刊>Signal processing >Incipient fault detection and diagnosis based on Kullback-Leibler divergence using Principal Component Analysis: Part Ⅰ
【24h】

Incipient fault detection and diagnosis based on Kullback-Leibler divergence using Principal Component Analysis: Part Ⅰ

机译:基于主成分分析的基于Kullback-Leibler散度的早期故障检测与诊断:第一部分

获取原文
获取原文并翻译 | 示例

摘要

Detection of faults under the Principal Component Analysis (PCA) framework can be made into either the principal or the residual subspace. Because of the large amount of variabilities naturally present in the principal subspace, there are usually ambiguities to detect small variations caused by incipient faults with the use of the first principal components. Distance-based detection and diagnosis methodology is usually used and the Hotelling's T~2 is the most common statistical distance defined in the principal subspace. However, because the T~2 often fails in detecting small shifts, the residual subspace has become the privileged space for fault detection with the SPE criterion. Therefore, there is a challenge to detect incipient faults within the principal subspace. We propose a fault detection approach based on a probability distribution measure. Residuals are generated by comparing the probability density of each of the latent scores to a reference one, using the Kullback-Leibler Divergence. From simulations it is shown that the proposed criterion successfully detects incipient faults which are undetectable by the distance discriminants. Also, it allows to isolate the fault and gives insights to the severity level of the detected abnormality thanks to its global character. A theoretical analysis is conducted to support the approach and the simulation results.
机译:在主成分分析(PCA)框架下对故障的检测可以分为主子空间或剩余子空间。由于主要子空间中自然存在大量可变性,因此通常存在使用第一主要成分来检测由初期故障引起的微小变化的歧义。通常使用基于距离的检测和诊断方法,并且,Hotelling的T〜2是在主子空间中定义的最常见的统计距离。但是,由于T〜2经常无法检测到小位移,因此剩余子空间已成为使用SPE准则进行故障检测的特权空间。因此,检测主子空间内的初期故障是一个挑战。我们提出了一种基于概率分布测度的故障检测方法。使用Kullback-Leibler散度,通过将每个潜在得分的概率密度与参考得分进行比较,可以生成残差。从仿真中可以看出,所提出的准则成功地检测出了距离判别器无法检测到的初期故障。此外,由于其整体特征,它可以隔离故障并提供对检测到的异常严重程度的洞察力。进行理论分析以支持该方法和仿真结果。

著录项

  • 来源
    《Signal processing》 |2014年第1期|278-287|共10页
  • 作者单位

    Laboratoire des Signawc et Systemes (US), OIRS, Supelec, Univ. Paris-Sud, 91192 Gif Sur Yvette, France,Laboratoire de Genie Electrique de Paris (LGEP), CNRS, Supelec, Univ. Pierre et Marie Curie, Univ. Paris-Sud.91192 GifSur Yvette, France;

    Laboratoire des Signawc et Systemes (US), OIRS, Supelec, Univ. Paris-Sud, 91192 Gif Sur Yvette, France;

    Laboratoire de Genie Electrique de Paris (LGEP), CNRS, Supelec, Univ. Pierre et Marie Curie, Univ. Paris-Sud.91192 GifSur Yvette, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Incipient fault; Detection and diagnosis; Principal Component Analysis; Kullback-Leibler divergence;

    机译:初期故障;检测和诊断;主成分分析;Kullback-Leibler散度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号