首页> 外文期刊>Signal processing >TOA sensor network self-calibration for receiver and transmitter spaces with difference in dimension
【24h】

TOA sensor network self-calibration for receiver and transmitter spaces with difference in dimension

机译:TOA传感器网络的自校准,适用于尺寸不同的接收器和发射器空间

获取原文
获取原文并翻译 | 示例

摘要

We study and solve the previously unstudied problem of finding both transmitter and receiver positions using only time of arrival (TOA) measurements when there is a difference in dimensionality between the affine subspaces spanned by receivers and transmitters. Anchor-free TOA network calibration has uses both in radio, radio strength and sound applications, such as calibrating ad hoc microphone arrays. Using linear techniques and requiring only minimal number of receivers and transmitters, an algorithm is constructed for general dimension p for the lower dimensional subspace. Degenerate cases are determined and partially characterized as when receivers or transmitters inhabit a lower dimensional affine subspace than was given as input. The algorithm is further extended to overdetermined cases in a straightforward manner. Utilizing the minimal solver, an algorithm using the Random Sample Consensus (RANSAC) paradigm has been constructed to simultaneously solve the calibration problem and remove severe outliers, a common problem in TOA applications. Simulated experiments show good performance for the minimal solver and the RANSAC-like algorithm under noisy measurements. Two indoor environment experiments using microphones and speakers give a RMSE of 2.35 cm and 3.95 cm on receiver and transmitter positions compared to computer vision reconstructions.
机译:当接收器和发送器跨越的仿射子空间之间的维数存在差异时,我们研究并解决了以前未研究的仅使用到达时间(TOA)测量来查找发送器和接收器位置的问题。无锚TOA网络校准已在无线电,无线电强度和声音应用中使用,例如,对ad hoc麦克风阵列进行校准。使用线性技术并且仅需要最少数量的接收器和发射器,针对低维子空间的通用维p构造算法。确定简并的情况,并将其部分表征为接收器或发送器居住的维仿射子空间比输入的给定子空间低。该算法以一种直接的方式进一步扩展到了超定情况。利用最小求解器,已构建了一种使用随机样本共识(RANSAC)范例的算法,以同时解决校准问题并消除严重的离群值,这是TOA应用中的常见问题。仿真实验表明,在噪声测量下,最小求解器和类似RANSAC的算法具有良好的性能。与计算机视觉重建相比,使用麦克风和扬声器进行的两个室内环境实验在接收器和发射器位置的RMSE分别为2.35 cm和3.95 cm。

著录项

  • 来源
    《Signal processing》 |2015年第2期|33-42|共10页
  • 作者单位

    Centre for Mathematical Sciences, Lund University, Sweden,Mathematics LTH, Centre for Mathematical Sciences, Lund Institute of Technology/Lund University, Box 118, SE-22100 LUND;

    Centre for Mathematical Sciences, Lund University, Sweden;

    Centre for Mathematical Sciences, Lund University, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TOA; Array calibration; Minimal problem; Ad hoc microphone arrays;

    机译:TOA;阵列校准;最小的问题;临时麦克风阵列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号