首页> 外文期刊>Signal processing >Saliency-induced reduced-reference quality index for natural scene and screen content images
【24h】

Saliency-induced reduced-reference quality index for natural scene and screen content images

机译:显着性引起的自然场景和屏幕内容图像的降低参考质量指数

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe develop a saliency-induced reduced-reference (SIRR) IQA measure.In SIRR, image quality is described by the similarity between two images’ saliency maps.SIRR is a cross-content-type measure, which works efficiently for both natural scene images (NSIs) and screen content images (SCIs).Experimental results show that SIRR is comparable to state-of-the-art full-reference and reduced-reference IQA measures in NSIs, and it can outperform most competitors in SCIs.AbstractMassive content composed of both natural scene and screen content has been generated with the increasing use of wireless computing and cloud computing, which call for general image quality assessment (IQA) measures working for both natural scene images (NSIs) and screen content images (SCIs). In this paper, we develop a saliency-induced reduced-reference (SIRR) IQA measure for both NSIs and SCIs. Image quality and visual saliency are two widely studied and closely related research topics. Traditionally, visual saliency is often used as a weighting map in the final pooling stage of IQA. Instead, we detect visual saliency as a quality feature since different types and levels of degradation can strongly influence saliency detection. Image quality is described by the similarity between two images’ saliency maps. In SIRR, saliency is detected through a binary image descriptor called “image signature”, which significantly reduces the reference data. We perform extensive experiments on five large-scale NSI quality assessment databases including LIVE, TID2008, CSIQ, LIVEMD, CID2013, as well as two recently constructed SCI QA databases, i.e., SIQAD and QACS. Experimental results show that SIRR is comparable to state-of-the-art full-reference and reduced-reference IQA measures in NSIs, and it can outperform most competitors in SCIs. The most important is that SIRR is a cross-content-type measure, which works efficiently for both NSIs and SCIs. The MATLAB source code of SIRR will be publicly available with this paper.
机译: 突出显示 我们制定了显着性降低参考(SIRR)的IQA度量。 在SIRR中,图像质量由两个图像的显着性图之间的相似性来描述。 SIRR是一种跨内容类型的度量,可有效地用于自然场景图像(NSI)和屏幕内容图像(SCI)。 实验结果表明,SIRR与NSI中最先进的全参考和低参考IQA措施相当 摘要 由自然场景和屏幕内容组成的海量内容随着无线计算和云计算的日益普及而产生,这需要进行一般的图像质量评估(IQA )衡量适用于自然场景图像(NSI)和屏幕内容图像(SCI)的效果。在本文中,我们为NSI和SCI开发了显着性诱导参考(SIRR)IQA度量。图像质量和视觉显着性是两个广泛研究且密切相关的研究主题。传统上,视觉显着性通常在IQA的最终合并阶段中用作权重图。取而代之的是,我们将视觉显着性检测为质量特征,因为不同类型和级别的降解会严重影响显着性检测。图像质量由两个图像的显着性图之间的相似性来描述。在SIRR中,显着性通过称为“图像签名”的二进制图像描述符进行检测,这大大减少了参考数据。我们在五个大型NSI质量评估数据库上进行了广泛的实验,其中包括LIVE,TID2008,CSIQ,LIVEMD,CID2013,以及两个最近构建的SCI QA数据库,即SIQAD和QACS。实验结果表明,SIRR与NSI中最先进的全参考和降参考IQA措施相当,并且可以胜过SCI的大多数竞争对手。最重要的是,SIRR是一种跨内容类型的度量,它对于NSI和SCI都有效。本文将公开提供SIRR的MATLAB源代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号