首页> 外文期刊>Signal processing >Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
【24h】

Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models

机译:状态空间模型中贝叶斯参数估计的非线性重要性抽样方案分析

获取原文
获取原文并翻译 | 示例

摘要

The Bayesian estimation of the unknown parameters of state-space (dynamical) systems has received considerable attention over the past decade, with a handful of powerful algorithms being introduced. In this paper we tackle the theoretical analysis of the recently proposed nonlinear population Monte Carlo (NPMC). This is an iterative importance sampling scheme whose key features, compared to conventional importance samplers, are (i) the approximate computation of the importance weights (IWs) assigned to the Monte Carlo samples and (ii) the nonlinear transformation of these IWs in order to prevent the degeneracy problem that flaws the performance of conventional importance samplers. The contribution of the present paper is a rigorous proof of convergence of the nonlinear IS (NIS) scheme as the number of Monte Carlo samples, M, increases. Our analysis reveals that the NIS approximation errors converge to 0 almost surely and with the optimal Monte Carlo rate of M~(−1/2). Moreover, we prove that this is achieved even when the mean estimation error of the IWs remains constant, a property that has been termed exact approximation in the Markov chain Monte Carlo literature. We illustrate these theoretical results by means of a computer simulation example involving the estimation of the parameters of a state-space model typically used for target tracking.
机译:在过去的十年中,状态空间(动态)系统未知参数的贝叶斯估计得到了相当大的关注,其中引入了一些功能强大的算法。在本文中,我们将对最近提出的非线性种群蒙特卡洛(NPMC)进行理论分析。这是一种迭代重要性抽样方案,与常规重要性抽样器相比,其关键特征是(i)分配给蒙特卡洛样本的重要性权重(IW)的近似计算,以及(ii)这些IW的非线性变换,以便可以防止退化传统问题重要性采样器性能的退化问题。本文的贡献是随着蒙特卡洛样本M的增加,非线性IS(NIS)方案收敛的严格证明。我们的分析表明,NIS近似误差几乎可以肯定地收敛到0,并且具有最佳的Monte Carlo速率M〜(-1/2)。此外,我们证明了即使在IW的平均估计误差保持恒定的情况下也能实现这一点,这一特性在Markov链蒙特卡洛文献中被称为精确逼近。我们通过一个计算机仿真示例来说明这些理论结果,该示例涉及对通常用于目标跟踪的状态空间模型的参数进行估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号