首页> 外文期刊>Neural computation >Parameter Estimation in Multiple Dynamic Synaptic Coupling Model Using Bayesian Point Process State-Space Modeling Framework
【24h】

Parameter Estimation in Multiple Dynamic Synaptic Coupling Model Using Bayesian Point Process State-Space Modeling Framework

机译:贝叶斯点过程状态空间建模框架多动态突触耦合模型的参数估计

获取原文
获取原文并翻译 | 示例

摘要

It is of great interest to characterize the spiking activity of individual neurons in a cell ensemble. Many different mechanisms, such as synaptic coupling and the spiking activity of itself and its neighbors, drive a cell’s firing properties. Though this is a widely studied modeling problem, there is still room to develop modeling solutions by simplifications embedded in previousmodels. The first shortcut is that synaptic coupling mechanisms in previous models do not replicate the complex dynamics of the synaptic response. The second is that the number of synaptic connections in these models is an order of magnitude smaller than in an actual neuron. In this research, we push this barrier by incorporating a more accurate model of the synapse and propose a system identification solution that can scale to a network incorporating hundreds of synaptic connections. Although a neuron has hundreds of synaptic connections, only a subset of these connections significantly contributes to its spiking activity. As a result, we assume the synaptic connections are sparse, and to characterize these dynamics, we propose a Bayesian pointprocess state-space model that lets us incorporate the sparsity of synaptic connections within the regularization technique into our framework.We develop an extended expectation-maximization. algorithm to estimate the free parameters of the proposed model and demonstrate the application of this methodology to the problem of estimating the parameters of many dynamic synaptic connections.We then go through a simulation example consisting of the dynamic synapses across a range of parameter values and show that the model parameters can be estimated using our method. We also show the application of the proposed algorithm in the intracellular data that contains 96 presynaptic connections and assess the estimation accuracy of our method using a combination of goodness-offit measures.
机译:在细胞集合中表征个体神经元的尖峰活动非常感兴趣。许多不同的机制,例如突触耦合和自身及其邻居的尖峰活动,驱动细胞的烧制特性。虽然这是一个广泛研究的建模问题,但仍有嵌入在以前的墨水中的简化开发建模解决方案的空间。第一捷径是先前模型中的突触耦合机制不复制突触响应的复杂动态。其次是这些模型中的突触连接的数量比实际神经元中小的数量级。在这项研究中,我们通过结合更准确的突触模型来推动该障碍,并提出一种可以扩展到包含数百个突触连接的网络的系统识别解决方案。尽管神经元具有数百个突触连接,但这些连接的子集显着促进其尖刺活动。因此,我们假设突触连接稀疏,并且表征这些动态,我们提出了一个贝叶斯观点的状态空间模型,使我们将正则化技术内的突触连接的休稀条融入我们的框架。我们发展了延长的期望 - 最大化。算法估计所提出的模型的自由参数,并演示该方法对估计许多动态突触连接的参数的问题的应用。然后通过一系列参数值和显示的动态突触组成的模拟示例。可以使用我们的方法估计模型参数。我们还展示了所提出的算法在含有96个突触前连接的细胞内数据中的应用,并使用良善措施的组合评估我们方法的估计准确性。

著录项

  • 来源
    《Neural computation》 |2021年第5期|1269-1299|共31页
  • 作者单位

    Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156-83111 Iran and Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston MA 02114 U.S.A;

    Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156-83111 Iran;

    Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156-83111 Iran;

    Department of Computer Science Worcester Polytechnic Institute Worcester MA 01609 U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号