首页> 外文期刊>Signal processing >Two penalized estimators based on variance stabilization transforms for sparse compressive recovery with Poisson measurement noise
【24h】

Two penalized estimators based on variance stabilization transforms for sparse compressive recovery with Poisson measurement noise

机译:基于方差稳定变换的两次惩罚估算,泊松测量噪声稀疏压缩恢复

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider compressive inversion of a signal/image that is sparse in typical orthonor-mal bases used in image processing, given its measurements that have been corrupted by Poisson noise. The square-root operation is known to convert a Poisson random variable into one that is approximately Gaussian distributed with a constant variance. We present two different computationally tractable, penalized estimators with a data-fidelity term based on the aforementioned square-root based 'variance stabilization transform'. The first estimator has been proposed earlier in the literature, but this is the first paper to analyze its theoretical performance in compressed sensing. Our second estimator is completely novel, and also has the interesting statistical property of being an approximately pivotal estimator. For both estimators, we specifically consider the case of a physically realistic sensing matrix in our analysis. We present detailed performance bounds on the ℓ_2 recovery error for purely sparse signals for both estimators, making use of many different Poisson concentration inequalities. Several numerical results are presented, showing the practicality of the proposed estimators.
机译:在本文中,考虑到在图像处理中使用的典型正交碱基的信号/图像的压缩反转,因为它的测量被泊松噪声损坏。已知平方根操作将泊松随机变量转换为具有恒定方差的高斯分布的一个。我们在上述基于方根的“方差稳定变换”上,我们呈现了两个不同的计算拨款,惩罚估计,数据保真术语是基于上述方根的“方差稳定变换”。第一个估计师在文献中提出,但这是第一种分析压缩感测的理论性能的论文。我们的第二次估算器是完全小说的,并且还具有一个有趣的统计属性,即牵引估计。对于这两个估计人,我们在我们的分析中具体考虑了物理上现实的感测矩阵的情况。我们在ℓ_2恢复误差上提出了详细的性能范围,以便使用估计器的纯粹稀疏信号,利用许多不同的泊松浓度不等式。提出了几种数值结果,显示了所提出的估计器的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号