首页> 外文期刊>Signal processing >Analysis of optimal thresholding algorithms for compressed sensing
【24h】

Analysis of optimal thresholding algorithms for compressed sensing

机译:压缩检测最优阈值算法分析

获取原文
获取原文并翻译 | 示例

摘要

The optimal k-thresholding (OT) and optimal k-thresholding pursuit (OTP) are newly introduced frameworks of thresholding techniques for compressed sensing and signal approximation. Such frameworks motivate the practical and efficient algorithms called relaxed optimal k-thresholding (ROTω) and relaxed optimal k-thresholding pursuit (ROTPω) which are developed through the tightest convex relaxations of OT and OTP, where ω is a prescribed integer number. The preliminary numerical results demonstrated in Zhao (2020) indicate that these approaches can stably reconstruct signals with a wide range of sparsity levels. However, the guaranteed performance of these algorithms with parameter ω ≥ 2 has not yet established in Zhao (2020). The purpose of this paper is to show the guaranteed performance of OT and OTP in terms of the restricted isometry property (RIP) of nearly optimal order for the sensing matrix governing the k-sparse signal recovery, and to establish the first guaranteed performance result for ROTω and ROTPω with ω > 2. In the meantime, we provide a numerical comparison between ROTPω and several existing thresholding methods.
机译:最佳k阈值(OT)和最佳k阈值追求(OTP)是新引入的用于压缩感测和信号近似的阈值技术的阈值技术框架。这种框架激励了称为松弛最佳k阈值的实用和高效算法(rotω)和松弛最佳的k阈值追踪(rotpω),其通过ET和OTP的最紧密的凸弛豫而发展,其中ω是规定的整数。 Zhao(2020)中显示的初步数值结果表明这些方法可以稳定地重建具有各种稀疏度水平的信号。然而,这些算法的保证性能具有参数ω≥2尚未在Zhao(2020)中建立。本文的目的是展示在控制K-Sparse信号恢复的感测矩阵的近最优顺序的受限制等距属性(RIP)方面的IT和OTP的保证性能,并建立第一个保证性能结果旋转ω和rotpω,具有ω> 2.在此同时,我们在rotpω和几个现有的阈值处理方法之间提供数值比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号