首页> 外文期刊>Signal processing >Theoretical analysis and image reconstruction for multi-bit quanta image sensors
【24h】

Theoretical analysis and image reconstruction for multi-bit quanta image sensors

机译:多比特量子图像传感器的理论分析与图像重建

获取原文
获取原文并翻译 | 示例

摘要

A new breed of photon-counting sensors, called quanta image sensor (QIS), enables the detection of light with precision represented by the number of photons arriving within a time period. However, most existing analysis results on QIS systems are formulated for the single-bit case only. Directly extending the existing single-bit analysis to the multi-bit case leads to the situation that the variance of the estimated exposure is greater than the Cramer-Rao bound (CRB). Also, the existing dynamic range analysis leads to a strange situation that the maximum exposure level is not a function of the spatiotemporal jot kernel size. This paper formally analyzes the properties of multi-bit QIS (MBQIS) systems. It derives the log likelihood function of the received photon counts in a spatiotemporal jot kernel, and introduces the concept of the probability of all jots being saturated. From the likelihood function result, we can obtain a maximum likelihood (ML) estimate for the exposure level and present an image construction algorithm, namely ML multi-bit (MLM). Since the estimate is ML based, the variance of the estimated exposure achieves the CRB asymptotically and the MLM is an asymptotically unbiased estimator. Also, based on the Fisher information concept, this paper derives the CRB on the variance of the estimated exposure. Hence the CRB given by this paper can be considered as a performance indicator for all algorithms. From the jot saturation analysis result, we can accurately formulate the relationship between dynamic range and spatiotemporal kernel size. Specifically, with our two analysis results, we can model the relationships between sensor design parameters and performance metrics (variance of the estimated exposure and the dynamic range). Since the two analysis results are independent of the construction algorithms used, they give us some guidelines to design a QIS system. In addition, this paper empirically studies the effect of the readout Gaussian noise. Finally, to demonstrate another application of the likelihood analysis result, we develop an enhanced version of MLM, namely MLM with denoising (MLMDN), based on the proposed likelihood function and the regularization concept.
机译:一种新的光子计数传感器,称为Quanta图像传感器(QIS),使得能够检测具有由在时间段内到达的光子数量表示的精度的光。但是,QIS系统的大多数现有分析结果仅针对单位案例配制。现有的单位分析,以多比特的情况下引线直接延伸到该情况,估计曝光的方差大于克拉美 - 罗更大界(CRB)。此外,现有的动态范围分析导致奇怪的情况,即最大曝光水平不是时空抖动内核尺寸的函数。本文正式分析了多比特QIS(MBQIS)系统的性质。它源于接收到的光子数的数似然函数在时空小额内核,并介绍被饱和所有jots概率的概念。从似然函数结果来看,我们可以获得曝光水平的最大可能性(ML)估计并呈现图像构造算法,即ML多位(MLM)。由于估计是基于M1的,因此估计的暴露的方差达到了渐近的CRB,并且MLM是渐近无偏的估计器。此外,根据Fisher信息概念,本文源于估计曝光的方差的CRB。因此,本文给出的CRB可以被视为所有算法的性能指标。从Jot饱和度分析结果,我们可以准确地制定动态范围和时空内核尺寸之间的关系。具体而言,通过我们的两个分析结果,我们可以模拟传感器设计参数和性能度量之间的关系(估计曝光和动态范围的方差)。由于两种分析结果与所使用的建筑算法无关,因此他们向我们提供了一些设计QIS系统的指导。此外,本文凭经验研究了读出高斯噪声的效果。最后,为了证明似然分析结果的另一种应用,我们基于所提出的似然函数和正则化概念,我们开发了具有去噪(MLMDN)的增强版本的MLM,即MLM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号