首页> 外文期刊>Signal processing >A level set model by regularizing local fitting energy and penalty energy term for image segmentation
【24h】

A level set model by regularizing local fitting energy and penalty energy term for image segmentation

机译:通过对图像分割进行局部拟合能量和惩罚能量术语来实现级别的模型

获取原文
获取原文并翻译 | 示例

摘要

A novel level set model is proposed by regularizing local fitting energy to segment the intensity inhomo-geneous images. In proposed model, local image fitting energy information is incorporated with penalty energy function. To segment intensity inhomogeneous images, a circular window filter is used to identify homogeneous regions. In addition, local information of homogeneous regions is constructed in form of local fitting function. A new double well potential function is formulated to regularize the contour curve and is used a penalty energy term which is added with local fitting functional in order to formulate multi-scale energy function. The experimental results show the robustness of proposed method compared to other level set models and deep learning based level set model. The comparative study of Jaccard similarity index (JSI) values and segmentation accuracy also validate the preciseness of the proposed model. Further, the proposed model yields better segmentation results compared to the other state-of-the-art models in terms of higher precision and recall values and lesser computational time. In addition, the proposed model is computationally efficient and robust to noise as well as contour initialization.
机译:通过将局部拟合能量进行规范,以将强度的Inhomo族图像分割来提出一种新型水平集模型。在提出的模型中,局部图像拟合能量信息结合到惩罚能量功能。对于分段强度不均匀图像,圆形窗口滤波器用于识别均匀区域。此外,均匀区域的局部信息以局部配件功能的形式构成。制定了一种新的双井电位功能以规则化轮廓曲线,并使用惩罚能量术语,该罚能术语加入局部配件功能,以制定多尺度能量功能。实验结果表明,与其他级别集模型和基于深度学习的水平集模型相比,所提出的方法的鲁棒性。 Jaccard相似性指数(JSI)值和分割精度的比较研究还验证了所提出的模型的准确性。此外,在更高的精度和召回值和较小的计算时间方面,所提出的模型与其他最先进的模型相比,产生了更好的分割结果。此外,所提出的模型是对噪声以及轮廓初始化的计算高效且鲁棒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号