首页> 外文期刊>Signal processing >TDOA-based localization with NLOS mitigation via robust model transformation and neurodynamic optimization
【24h】

TDOA-based localization with NLOS mitigation via robust model transformation and neurodynamic optimization

机译:基于TDOA的定位,通过鲁棒模型转化和神经动力学优化的NLOS缓解

获取原文
获取原文并翻译 | 示例

摘要

This paper revisits the problem of locating a signal-emitting source from time-difference-of-arrival (TDOA) measurements under non-line-of-sight (NLOS) propagation. Many currently fashionable methods for NLOS mitigation in TDOA-based localization tend to solve their optimization problems by means of convex relaxation and, thus, are computationally inefficient. Besides, previous studies show that manipulating directly on the TDOA metric usually gives rise to intricate estimators. Aiming at bypassing these challenges, we turn to retrieve the underlying time-of-arrival framework by treating the unknown source onset time as an optimization variable and imposing certain inequality constraints on it, mitigate the NLOS errors through the ℓ_1-norm robustification, and finally apply a hardware realizable neurodynamic model based on the redefined augmented Lagrangian and projection theorem to solve the resultant non-convex optimization problem with inequality constraints. It is validated through extensive simulations that the proposed scheme can strike a nice balance between localization accuracy, computational complexity, and prior knowledge requirement.
机译:本文重新定位在非视线(NLOS)传播下从到达时间差(TDOA)测量的信号发射源的问题。基于TDOA的定位中的许多目前用于NLOS缓解的时尚方法倾向于通过凸松弛来解决它们的优化问题,因此计算效率低下。此外,之前的研究表明,直接操纵TDOA度量通常会产生复杂的估计。旨在绕过这些挑战,我们通过将未知的源发行时间作为优化变量处理并对其进行某些不等式约束来转动来检索底层的到达时间框架,通过ℓ_1-rom稳定性来减轻NLOS错误,最后基于重新定义的增强拉格朗日和投影定理应用硬件可实现的神经动力学模型,解决了不等式约束的结果非凸优化问题。通过广泛的模拟验证,所提出的方案可以在本地化准确性,计算复杂性和先验知识要求之间取得良好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号