首页> 外文期刊>Signal processing >Determining the dimension and structure of the subspace correlated across multiple data sets
【24h】

Determining the dimension and structure of the subspace correlated across multiple data sets

机译:确定跨多个数据集相关的子空间的维度和结构

获取原文
获取原文并翻译 | 示例

摘要

Detecting the components common or correlated across multiple data sets is challenging due to a large number of possible correlation structures among the components. Even more challenging is to determine the precise structure of these correlations. Traditional work has focused on determining only the model order, i.e., the dimension of the correlated subspace, a number that depends on how the model-order problem is defined. Moreover, identifying the model order is often not enough to understand the relationship among the components in different data sets. We aim at solving the complete model-selection problem, i.e., determining which components are correlated across which data sets. We prove that the eigenvalues and eigenvectors of the normalized covariance matrix of the composite data vector, under certain conditions, completely characterize the underlying correlation structure. We use these results to solve the model-selection problem by employing bootstrap-based hypothesis testing.
机译:由于组件之间的大量可能的相关结构,检测多个数据集共同或相关的组件是具有挑战性的。更具有挑战性的是确定这些相关性的精确结构。传统工作的重点是仅确定仅确定模型顺序,即相关子空间的维度,这取决于定义模型顺序问题的数字。此外,识别模型顺序通常不足以了解不同数据集中组件之间的关系。我们的目标是解决完整的模型选择问题,即确定跨哪些数据集相关的组件。我们证明,在某些条件下,复合数据向量的标准化协方差基质的特征值和特征向量完全表征了潜在的相关结构。我们使用这些结果来解决基于Bootstrap的假设测试来解决模型选择问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号