首页> 外文期刊>Signal processing >Seamless group target tracking using random finite sets
【24h】

Seamless group target tracking using random finite sets

机译:无缝组目标跟踪使用随机有限集

获取原文
获取原文并翻译 | 示例

摘要

In many surveillance applications, target tracking algorithms have to deal with dense group targets in contrast to independently moving and well-separated targets as assumed in most scenarios. An effective strategy to handle such a group of targets is to first track the overall group and then attempt to extract the states of individual targets. Based on the Random Finite Set theory, the τ-Cardinalized Probability Hypothesis Density (τ-CPHD) filter is proposed in this paper as an effective method for group target tracking. This filter accurately extracts target states and represents the distribution of the legacy PHD. Association and track extraction are done in the post-processing step, without affecting the filtering process or overloading the computing resources. Furthermore, the group motion is modeled in conjunction with individual target motion models, with model proportion being updated by the proposed filter. Initialization process is carried out adaptively using the group motion trend through group state fitting. All these characteristics make the new filter flexible and seamlessly applicable to real-world tracking problems with group targets. Simulations demonstrate the superior performance of the proposed filter with individual target and group motion models being considered in combination or separately.
机译:在许多监视应用中,目标跟踪算法必须与大多数情况下假设的独立移动和分离的目标相反,处理致密组目标。处理此类目标的有效策略是首先跟踪整个组,然后尝试提取各个目标的国家。基于随机有限集理论,本文提出了τ-Clowinalized概率假设密度(τ-CPHD)滤波器作为组目标跟踪的有效方法。该过滤器精确提取目标状态并表示遗留博士学位的分布。关联和跟踪提取在后处理步骤中完成,而不影响过滤过程或重载计算资源。此外,组动作与各个目标运动模型结合建模,具有所提出的滤波器更新的模型比例。初始化过程通过组状态拟合自适应地使用组动作趋势进行。所有这些特性使新的过滤器灵活,可无缝地适用于群体目标的现实跟踪问题。仿真展示了所提出的滤波器与各个目标和组合的组动作模型的优越性性能。

著录项

  • 来源
    《Signal processing》 |2020年第11期|107683.1-107683.13|共13页
  • 作者单位

    College of Electronic Science and Engineering National University of Defense Technology Changsha 410073 China Department of Electrical and Computer Engineering McMaster University Hamilton ON L8S4L8 Canada;

    College of Electronic Science and Engineering National University of Defense Technology Changsha 410073 China;

    College of Electronic Science and Engineering National University of Defense Technology Changsha 410073 China;

    Department of Electrical and Computer Engineering McMaster University Hamilton ON L8S4L8 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multitarget tracking; Group target tracking; Finite set statistics; τ-Cardinalized probability hypothesis density filter;

    机译:多数码跟踪;组目标跟踪;有限集统计;τ-cardinalized概率假设密度滤波器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号