首页> 外文期刊>Signal processing >Semi-supervised optimal recursive filtering and smoothing in non-Gaussian Markov switching models
【24h】

Semi-supervised optimal recursive filtering and smoothing in non-Gaussian Markov switching models

机译:非高斯Markov交换模型中半监控最佳递送过滤和平滑

获取原文
获取原文并翻译 | 示例

摘要

Filtering and smoothing in switching state-space models are important in numerous applications. The classic family of conditionally Gaussian linear state space models (CGLSSMs) is a natural extension of the Gaussian linear system by introducing its dependence on switches. In spite of their simplicity, recursive filtering and smoothing are no longer feasible in CGLSSMs and approximate methods must be used. Conditionally Markov switching hidden linear models (CMSHLMs) are alternative models which allow recursive optimal exact filtering and smoothing. We introduce an original family of CMSHLMs defined with copulas and we address the problem of their identification. The proposed identification method chooses a model in a family of admissible parametric models and estimates the parameters. It is applied to a learning sample containing observations and states, while the switches are unknown. The interest of the proposed "semi-unsupervised" filtering and smoothing is validated via experiments on simulated data.
机译:在交换状态空间模型中过滤和平滑在许多应用中都很重要。通过引入其对开关的依赖性,有条件地高斯线性状态空间模型(CGLSSMS)的经典系列是高斯线性系统的自然延伸。尽管他们简单起见,递归过滤和平滑在CGLSMS中不再可行,并且必须使用近似方法。条件性马尔可夫切换隐藏的线性模型(CMSHLMS)是允许递归最佳精确过滤和平滑的替代模型。我们介绍了用Copulas定义的原始CMSHLMS系列,我们解决了他们的身份证明。所提出的识别方法选择可允许参数模型系列的模型,并估计参数。它适用于含有观察和状态的学习样本,而交换机未知。通过模拟数据的实验验证了所提出的“半无监督”过滤和平滑的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号