首页> 外文期刊>Signal processing >Gaussian-categorical Bayesian inference for massive MIMO downlink channel estimation
【24h】

Gaussian-categorical Bayesian inference for massive MIMO downlink channel estimation

机译:高斯分类贝叶斯推动大规模MIMO下行链路信道估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate wideband channel estimation in downlink massive multiple-input multiple-output (MIMO) systems, where the channel sparsity patterns may vary significantly along the large base station (BS) array. We tackle the problem of channel estimation under the framework of Bayesian inference. To characterize the spatial non-stationarity in massive MIMO, a hierarchical Gaussian-categorical (GC) prior model is designed for the channel vectors to be estimated. The hyper-parameters associated with the GC prior are artfully coupled such that the GC model has the potential to characterize the varying channel sparsity patterns along the BS array. By resorting to the variational Bayesian inference methodology, we develop an iterative algorithm to adaptively infer the hyper-parameters in the prior model from pilot observations, thereby obtaining the estimates of the channel vectors. Simulations demonstrate that the proposed method remarkably outperforms the state-of-the-art counterparts, and can approach the performance bound realized by the genie-aided least square (LS) method.
机译:在本文中,我们研究了下行链路大量多输入多输出(MIMO)系统中的宽带信道估计,其中沟道稀疏模式沿大型基站(BS)阵列显着变化。我们在贝叶斯推理框架下解决信道估计问题。为了表征大规模MIMO中的空间非公平性,设计了一种分层高斯分类(GC)以前的模型,用于估计的信道矢量。与GC先验相关联的超参数致密地耦合,使得GC模型具有沿BS阵列表征变化的沟道稀疏模式的可能性。通过求助于变分贝叶斯推理方法,我们开发一种迭代算法,可自适应地推断先前模型的超参数从导频观察,从而获得信道矢量的估计。模拟表明,所提出的方法显着优于最先进的对应物,并且可以接近由基因辅助最小二乘(LS)方法实现的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号