首页> 外文期刊>Signal processing >Fast and accurate single image super-resolution via an energy-aware improved deep residual network
【24h】

Fast and accurate single image super-resolution via an energy-aware improved deep residual network

机译:通过能量感知改进的深度残差网络快速准确的单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Recently, convolutional neural network (CNN) based single image super-resolution (SISR) solutions have demonstrated significant progress on restoring accurate high-resolution image based on its corresponding low-resolution version. However, most state-of-the-art SISR approaches attempt to achieve higher accuracy by pursuing deeper or more complicated models, which adversely increases computational cost. To achieve a good balance between restoration accuracy and computational speed, we make simple but effective modifications to the structure of residual blocks and skip-connections between stacked layers, and then propose a novel energy-aware training loss to adaptively adjust the restoration of high-frequency and low-frequency image regions. Extensive qualitative and quantitative evaluation results on benchmark datasets verify the effectiveness of the proposed techniques that they significantly improve SISR accuracy while causing no/ignorable extra computational loads. (C) 2019 Elsevier B.V. All rights reserved.
机译:最近,基于卷积神经网络(CNN)的单图像超分辨率(SISR)解决方案在基于其对应的低分辨率版本上求助于恢复精确的高分辨率图像的显着进展。然而,最先进的SISR方法通过追求更深或更复杂的模型来实现更高的准确性,这是不利地提高计算成本的影响。为了在恢复精度和计算速度之间实现良好的平衡,我们对堆叠层之间的剩余块和跳过连接的结构进行了简单但有效的修改,然后提出了一种新的能量感知训练损失,以便自适应调整高的恢复频率和低频图像区域。基准数据集的广泛定性和定量评估结果验证了所提出的技术的有效性,即它们显着提高了SISR精度,同时导致无/无知的额外计算负载。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Signal processing》 |2019年第9期|115-125|共11页
  • 作者单位

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Zhejiang Peoples R China|Louisiana State Univ Sch Elect Engn & Comp Sci Eels Baton Rouge LA 70803 USA;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Zhejiang Peoples R China;

    Louisiana State Univ Sch Elect Engn & Comp Sci Eels Baton Rouge LA 70803 USA;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Super-resolution; Loss function; Residual network; Skip connections; Energy aware;

    机译:超级分辨率;损失功能;剩余网络;跳过连接;能量意识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号