首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Deep Inception-Residual Laplacian Pyramid Networks for Accurate Single-Image Super-Resolution
【24h】

Deep Inception-Residual Laplacian Pyramid Networks for Accurate Single-Image Super-Resolution

机译:深度成立 - 残余拉普拉斯金字塔网络,用于精确单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

With exploiting contextual information over large image regions in an efficient way, the deep convolutional neural network has shown an impressive performance for single-image super-resolution (SR). In this paper, we propose a new deep convolutional network by cascading multiple well-designed inception-residual blocks within the deep Laplacian pyramid framework to progressively restore the missing high-frequency details in the low-resolution images. By optimizing our network structure, the trainable depth of our proposed network gains a significant improvement, which in turn improves super-resolving accuracy. However, the saturation and degradation of training accuracy remains a critical problem. With regard to this, we propose an effective two-stage training strategy, in which we first use the images downsampled from the ground-truth high-resolution (HR) images to pretrain the inception-residual blocks on each pyramid level with an extremely high learning rate enabled by gradient clipping, and then the original ground-truth HR images are used to fine-tune all the pretrained inception-residual blocks for obtaining our final SR models. Furthermore, we present a new loss function operating in both image space and local rank space to optimize our network for exploiting the contextual information among different output components. Extensive experiments on benchmark data sets validate that the proposed method outperforms the existing state-of-the-art SR methods in terms of the objective evaluation as well as the visual quality.
机译:利用以高效的方式利用大图像区域的上下文信息,深度卷积神经网络已经为单图像超分辨率(SR)表示了令人印象深刻的性能。在本文中,我们通过在深拉普拉斯金字塔框架内级联多种设计的初始残余块来提出新的深度卷积网络,逐步恢复低分辨率图像中缺失的高频细节。通过优化我们的网络结构,我们所提出的网络的可培训深度取得了显着的改进,这又提高了超级解析精度。然而,训练精度的饱和度和劣化仍然是一个关键问题。关于此,我们提出了一种有效的两级培训策略,其中我们首先使用从地面真理高分辨率(HR)图像下采样的图像以极高的每个金字塔水平预先绘制成立 - 残余块通过渐变剪裁启用的学习速率,然后使用原始地理HR图像来微调所有预磨削的成立 - 残余块,以获得最终的SR模型。此外,我们在图像空间和本地等级空间中展示了一种新的损失函数,以优化我们的网络,以利用不同输出组件之间的上下文信息。基准数据集的广泛实验验证了所提出的方法在客观评估和视觉质量方面优于现有的最先进的SR方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号