首页> 外文期刊>Signal processing >Infrared and visible image fusion and denoising via l_2 - l_p norm minimization
【24h】

Infrared and visible image fusion and denoising via l_2 - l_p norm minimization

机译:通过l_2-l_p范数最小化进行红外和可见光图像融合和去噪

获取原文
获取原文并翻译 | 示例

摘要

Most traditional infrared and visible image fusion methods often ignore noise in acquisition or transmission and their performance inevitably decreases in practical applications. To address this problem, a new and effective variational model is proposed for simultaneous image fusion and denoising. In an l_2 - l_p norm minimization setting with p = 0 and p = 1 respectively, the hybrid l_2 norm fidelity term is built to preserve image intensity and details from both infrared and visible images. And the nonconvex l_0 norm and convex l_1 norm sparsity constraints are applied to reduce noise while preserving important image fine features. Furthermore, a computationally efficient numerical algorithm based on half-quadratic splitting iteration is used to solve the complex optimization problem. Experimental results demonstrate that the proposed method can achieve a superior performance compared with existing fusion methods in both subjective and objective assessments.
机译:大多数传统的红外和可见光图像融合方法通常会在采集或传输过程中忽略噪声,并且在实际应用中其性能不可避免地会降低。为了解决这个问题,提出了一种新的有效的变分模型,用于同时图像融合和去噪。在分别具有p = 0和p = 1的l_2-l_p范数最小化设置中,建立了混合l_2范数保真度项以保留红外和可见图像的图像强度和细节。并应用非凸l_0范数和凸l_1范数稀疏约束来减少噪声,同时保留重要的图像精细特征。此外,基于半二次分裂迭代的高效计算数值算法被用于解决复杂的优化问题。实验结果表明,与现有的融合方法相比,该方法在主观和客观评估方面均能达到较好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号