首页> 外文期刊>Mathematical Problems in Engineering >Weighted l_p Norm Sparse Error Constraint Based ADMM for Image Denoising
【24h】

Weighted l_p Norm Sparse Error Constraint Based ADMM for Image Denoising

机译:加权L_P规范稀疏误差约束基于ADMM的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

In the process of image denoising, the accurate prior knowledge cannot be learned due to the influence of noise. Therefore, it is difficult to obtain better sparse coefficients. Based on this consideration, a weighted lp norm sparse error constraint (WPNSEC) model is proposed. Firstly, the suitable setting of power p in the lp norm is made a detailed analysis. Secondly, the proposed model is extended to color image denoising. Since the noise of RGB channels has different intensities, a weight matrix is introduced to measure the noise levels of different channels, and a multichannel weighted lp norm sparse error constraint algorithm is proposed. Thirdly, in order to ensure that the proposed algorithm is tractable, the multichannel WPNSEC model is converted into an equality constraint problem solved via alternating direction method of multipliers (ADMM) algorithm. Experimental results on gray image and color image datasets show that the proposed algorithms not only have higher peak signal-to-noise ratio (PSNR) and feature similarity index (FSIM) but also produce better visual quality than competing image denoising algorithms.
机译:在图像去噪的过程中,由于噪声的影响而无法学习准确的先验知识。因此,难以获得更好的稀疏系数。基于此考虑,提出了一种加权LP规范稀疏误差约束(WPNSEC)模型。首先,在LP标准中的功率P的合适设置进行了详细的分析。其次,所提出的模型扩展到彩色图像去噪。由于RGB通道的噪声具有不同的强度,因此引入了权重矩阵来测量不同通道的噪声水平,并且提出了多通道加权LP规范稀疏误差约束算法。第三,为了确保所提出的算法是发布的,将多通道WPNSEC模型转换为通过乘法器(ADMM)算法的交替方向方法解决的平等约束问题。灰色图像和彩色图像数据集的实验结果表明,所提出的算法不仅具有较高的峰值信噪比(PSNR)和特征相似性指数(FSIM),而且还产生比竞争图像去噪算法更好的视觉质量。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第11期|1262171.1-1262171.15|共15页
  • 作者单位

    Henan Normal Univ Coll Comp & Informat Engn Xinxiang Henan Peoples R China|Engn Technol Res Ctr Comp Intelligence & Data Min Xinxiang Henan Peoples R China;

    Henan Normal Univ Coll Comp & Informat Engn Xinxiang Henan Peoples R China;

    Henan Normal Univ Coll Comp & Informat Engn Xinxiang Henan Peoples R China;

    Henan Normal Univ Coll Comp & Informat Engn Xinxiang Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号