首页> 外文期刊>Neurocomputing >Non-convex weighted ℓ_p nuclear norm based ADMM framework for image restoration
【24h】

Non-convex weighted ℓ_p nuclear norm based ADMM framework for image restoration

机译:基于非凸加权ℓ_p核模的ADMM图像复原框架

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the fact that the matrix formed by nonlocal similar patches in a natural image is of low rank, the nuclear norm minimization (NNM) has been widely used in various image processing studies. Nonetheless, nuclear norm based convex surrogate of the rank function usually over-shrinks the rank components since it treats different components equally, and thus may produce a result far from the optimum. To alleviate the aforementioned limitations of the nuclear norm, in this paper we propose a new method for image restoration via the non-convex weighted l(p) nuclear norm minimization (NCW-NNM), which is able to accurately impose the image structural sparsity and self-similarity simultaneously. To make the proposed model tractable and robust, the alternating direction method of multiplier (ADMM) framework is adopted to solve the associated non-convex minimization problem. Experimental results on various image restoration problems, including image deblurring, image inpainting and image compressive sensing (CS) recovery, demonstrate that the proposed method outperforms many current state-of-the-art methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:受到自然图像中由非局部相似斑块形成的矩阵的秩较低的启发,核规范最小化(NNM)已广泛用于各种图像处理研究中。尽管如此,基于核规范的秩函数凸替代通常会过度缩小秩分量,因为它平等地对待不同的分量,因此可能会产生远非最优的结果。为了缓解上述核规范的局限性,本文提出了一种通过非凸加权l(p)核规范最小化(NCW-NNM)进行图像复原的新方法,该方法能够准确地施加图像结构稀疏性和自我相似性。为了使所提出的模型易于处理且健壮,采用了乘数交替方向(ADMM)框架来解决相关的非凸最小化问题。针对各种图像恢复问题的实验结果,包括图像去模糊,图像修复和图像压缩感测(CS)恢复,证明了该方法优于许多当前的最新方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第15期|209-224|共16页
  • 作者单位

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu 90014, Finland;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nokia Bell Labs, 600 Mt Ave, Murray Hill, NJ 07974 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image restoration; Low rank; Nuclear norm minimization; Non-convex; Weighted l(p) nuclear norm; ADMM;

    机译:图像复原;低秩;核规范最小化;非凸;加权l(p)核规范;ADMM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号