首页> 外文期刊>Signal processing >Regularized robust estimation of mean and covariance matrix for incomplete data
【24h】

Regularized robust estimation of mean and covariance matrix for incomplete data

机译:不完整数据的均值和协方差矩阵的正则鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the robust estimation of the mean and covariance matrix for incomplete multivariate observations with the monotone missing-data pattern. First, we develop two efficient numerical algorithms for the existing robust estimator for the monotone incomplete data, i.e., the maximum likelihood (ML) estimator assuming the samples are from a Student's t-distribution. The proposed algorithms can be more than one order of magnitude faster than the existing algorithms. Then, to deal with the unreliability and the inapplicability of the Student's t ML estimator when the number of samples is relatively small compared to the dimension of parameters, we propose a regularized robust estimator, which is defined as the maximizer of a penalized log-likelihood. The penalty term is constructed with a prior target as its global maximizer, towards which the estimator will shrink the mean and covariance matrix. In addition, two numerical algorithms are derived for the regularized estimator. Numerical simulations show the fast convergence rates of the proposed algorithms and the good estimation accuracy of the proposed regularized estimator. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文考虑了具有单调缺失数据模式的不完整多元观测值的均值和协方差矩阵的鲁棒估计。首先,我们为单调不完整数据的现有鲁棒估计量开发了两个有效的数值算法,即假设样本来自学生的t分布,即最大似然(ML)估计量。所提出的算法可以比现有算法快一个数量级以上。然后,为处理当样本数量与参数维数相比较小时学生t ML估计量的不可靠性和不适用性,我们提出了一种正则化的稳健估计量,其定义为惩罚对数似然的最大化。惩罚项的构造是将先前的目标作为其全局最大化器,估计器将向该目标收缩均值和协方差矩阵。此外,还为正则估计器导出了两种数值算法。数值仿真表明,所提出算法的收敛速度快,所提出的正则估计量具有良好的估计精度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号