首页> 外文期刊>Signal processing >Cooperative sensor fusion in centralized sensor networks using Cauchy-Schwarz divergence
【24h】

Cooperative sensor fusion in centralized sensor networks using Cauchy-Schwarz divergence

机译:使用柯西-舒瓦兹散度的集中式传感器网络中的协作传感器融合

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new solution for statistical fusion of multi-sensor information acquired from different fields of view, in a centralized sensor network. The focus is on applications that involve tracking unknown number of objects with time-varying states. Our solution is a track-to-track fusion method in which the information contents of posteriors are combined. Existing information-theoretic solutions for track-to-track fusion in sensor networks are commonly devised based on minimizing the average information divergence from the local posteriors to the fused one. A common approach is to use Generalized Covariance Intersection rule for sensor fusion. This approach works best when all the sensors detect the same object(s), and performs poorly when fields-of-view are different. We suggest Cauchy-Schwarz divergence to be used for measuring information divergence. We demonstrate that employing Cauchy-Schwarz divergence leads to fusion rules that are generally more tolerant to imperfect consensus. We show that the proposed fusion rule for multiple Poisson posteriors is the weighted arithmetic mean of the Poisson densities. Furthermore, we derive the fusion rule for labeled multi Bernoulli filter by approximating the labeled multi Bernoulli density to its first order moment. Numerical experiments show the superior performance of our solution compared to Kullback-Leibler averaging method. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的解决方案,用于在集中式传感器网络中对从不同视场获取的多传感器信息进行统计融合。重点是涉及跟踪具有时变状态的未知数量对象的应用程序。我们的解决方案是一种轨道到轨道融合方法,其中结合了后代的信息内容。传感器网络中轨道间融合的现有信息理论解决方案通常是基于最小化从本地后代到融合后代的平均信息差异而设计的。一种常见的方法是使用广义协方差相交规则进行传感器融合。当所有传感器都检测到同一物体时,此方法效果最佳,而当视场不同时,该方法效果较差。我们建议将Cauchy-Schwarz散度用于度量信息散度。我们证明了采用柯西-舒瓦兹散度会导致融合规则,这些规则通常更能容忍不完美的共识。我们表明,所提出的多个泊松后验的融合规则是泊松密度的加权算术平均值。此外,我们通过将标记的多重伯努利密度近似为其一阶矩来导出标记的多重伯努利滤波器的融合规则。数值实验表明,与Kullback-Leibler平均方法相比,我们的解决方案具有优越的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号