首页> 外文期刊>Signal processing >Maximum likelihood covariance matrix estimation from two possibly mismatched data sets
【24h】

Maximum likelihood covariance matrix estimation from two possibly mismatched data sets

机译:来自两个可能不匹配的数据集的最大似然协方差矩阵估计

获取原文
获取原文并翻译 | 示例

摘要

We consider estimating the covariance matrix from two data sets, one whose covariance matrix R-1 is the sought one and another set of samples whose covariance matrix R-2 slightly differs from the sought one, due e.g. to different measurement configurations. We assume however that the two matrices are rather close, which we formulate by assuming that R-1(1/2) (R2-1R11/2)vertical bar R-1 follows a Wishart distribution around the identity matrix. It turns out that this assumption results in two data sets with different marginal distributions, hence the problem becomes that of covariance matrix estimation from two data sets which are distribution-mismatched. The maximum likelihood estimator (MLE) is derived and is shown to depend on the values of the number of samples in each set. We show that it involves whitening of one data set by the other one, shrinkage of eigenvalues and colorization, at least when one data set contains more samples than the size p of the observation space. When both data sets have less than p samples but the total number is larger than p, the MLE again entails eigenvalues shrinkage but this time after a projection operation. Simulation results compare the new estimator to state of the art techniques. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们考虑从两个数据集估计协方差矩阵,一个数据集的协方差矩阵R-1是所寻找的数据,而另一组样本的协方差矩阵R-2与所寻求的数据略有不同,例如。不同的测量配置。但是,我们假设这两个矩阵非常接近,我们通过假设R-1(1/2)(R2-1R11 / 2)竖线R-1遵循单位矩阵周围的Wishart分布来进行公式化。事实证明,这种假设导致两个具有不同边际分布的数据集,因此问题就变成了从两个分布不匹配的数据集进行协方差矩阵估计的问题。得出最大似然估计器(MLE),并显示它取决于每组样本数的值。我们表明,至少当一个数据集包含的样本数多于观​​察空间的大小p时,它涉及一个数据集的白化,另一特征值的缩小和着色。当两个数据集的样本均少于p个但总数大于p时,MLE再次需要特征值收缩,但这一次是在投影操作之后。仿真结果将新的估算器与最新技术进行了比较。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号