首页> 外文期刊>Signal processing >Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions
【24h】

Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions

机译:不匹配条件下复杂椭圆对称分布的最大似然协方差矩阵估计

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the maximum likelihood (ML) estimation of scatter matrix of complex elliptically symmetric (CES) distributed data when the hypothesized and the true model belong to the CES family but are different, then under mismatched model condition. Firstly, we derive the Huber limit, or sandwich matrix expression, for a generic CES model. Then, we compare the performance of mismatched and matched ML estimators to the Huber limit and to the Cramer-Rao lower bound (CRLB) in some relevant study cases.
机译:当假设模型和真实模型属于CES系列,但在不匹配模型条件下时,本文讨论了复杂椭圆对称(CES)分布数据的散射矩阵的最大似然(ML)估计。首先,我们推导通用CES模型的Huber极限或三明治矩阵表达式。然后,在一些相关的研究案例中,我们将不匹配和匹配的ML估计量的性能与Huber极限和Cramer-Rao下界(CRLB)进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号