首页> 外文OA文献 >Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 2: The Under-Sampled Case
【2h】

Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 2: The Under-Sampled Case

机译:使用期望似然法的复杂椭圆对称分布中的正则协方差矩阵估计-第2部分:欠采样情况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the first part of this series of two papers, we extended the expected likelihood approach originally developed in the Gaussian case, to the broader class of complex elliptically symmetric (CES) distributions and complex angular central Gaussian (ACG) distributions. More precisely, we demonstrated that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual scatter matrix $mSigma_{0}$ does not depend on the latter: it only depends on the density generator for the CES distribution and is distribution-free in the case of ACG distributed data, i.e., it only depends on the matrix dimension $M$ and the number of independent training samples $T$, assuming that $T geq M$. Additionally, regularized scatter matrix estimates based on the EL methodology were derived. In this second part, we consider the under-sampled scenario ($T leq M$) which deserves a specific treatment since conventional maximum likelihood estimates do not exist. Indeed, inference about the scatter matrix can only be made in the $T$-dimensional subspace spanned by the columns of the data matrix. We extend the results derived under the Gaussian assumption to the CES and ACG class of distributions. Invariance properties of the under-sampled likelihood ratio evaluated at $mSigma_{0}$ are presented. Remarkably enough, in the ACG case, the p.d.f. of this LR can be written in a rather simple form as a product of beta distributed random variables. The regularized schemes derived in the first part, based on the EL principle, are extended to the under-sampled scenario and assessed through numerical simulations.
机译:在这两篇论文系列的第一部分中,我们将最初在高斯案例中开发的预期似然方法扩展到了更广泛的复杂椭圆对称(CES)分布和复杂角中心高斯(ACG)分布。更准确地说,我们证明了(未知)实际散点矩阵$ mSigma_ {0} $的似然比(LR)的概率密度函数(pdf)不依赖于后者:它仅依赖于CES分布,并且在ACG分布数据的情况下是无分布的,即,它仅取决于矩阵维$ M $和独立训练样本$ T $的数量(假定$ T geq M $)。此外,还基于EL方法推导了正规化的散射矩阵估计。在第二部分中,我们考虑欠采样情况($ T leq M $),因为不存在常规的最大似然估计,因此应采取特殊的处理措施。实际上,只能在由数据矩阵的列所跨越的$ T $维子空间中进行有关散布矩阵的推断。我们将在高斯假设下得出的结果扩展到CES和ACG分布类别。给出了在$ mSigma_ {0} $处评估的欠采样似然比的不变性。在ACG情况下,p.d.f。 LR的β可以作为β分布随机变量的乘积以相当简单的形式编写。在第一部分中基于EL原理得出的正则化方案被扩展到欠采样情况,并通过数值模拟进行评估。

著录项

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号