首页> 外文期刊>Signal processing >The adaptive block sparse PCA and its application to multi-subject FMRI data analysis using sparse mCCA
【24h】

The adaptive block sparse PCA and its application to multi-subject FMRI data analysis using sparse mCCA

机译:自适应块稀疏PCA及其在基于稀疏mCCA的多主题FMRI数据分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the problem of multi-subject functional magnetic resonance imaging (fMRI) data sets analysis using multiple-set canonical correlation analysis (mCCA), in this paper we propose a new variant of the principal component analysis (PCA) method, namely the adaptive block sparse PCA. It has the advantage to produce modified principal components with block sparse loadings. It is derived using penalized rank one matrix approximation where the penalty is introduced in the minimization problem to promote block sparsity of the loading vectors. An efficient algorithm is proposed for its computation. The effectiveness of the proposed method is illustrated on the problem of multi-subject fMRI data sets analysis using mCCA which is a generalization of canonical correlation analysis (CCA) to three or more sets of variables. This application is obtained by deriving the connection between mCCA and the singular value decomposition (SVD). (C) 2018 Elsevier B.V. All rights reserved.
机译:鉴于使用多集规范相关分析(mCCA)进行多对象功能磁共振成像(fMRI)数据集分析的问题,本文提出了一种新的主​​成分分析(PCA)方法变体,即自适应块稀疏PCA。产生具有块稀疏加载的修改后的主成分的优势。它是使用罚秩一矩阵近似导出的,其中在最小化问题中引入了罚分以促进加载矢量的块稀疏性。提出了一种高效的算法。在使用mCCA进行多对象fMRI数据集分析的问题上说明了所提出方法的有效性,mCCA是对三组或更多组变量进行规范相关分析(CCA)的概括。通过推导mCCA与奇异值分解(SVD)之间的联系来获得此应用程序。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号