首页> 外文期刊>Signal Processing, IET >Cardiac disorder classification by heart sound signals using murmur likelihood and hidden markov model state likelihood
【24h】

Cardiac disorder classification by heart sound signals using murmur likelihood and hidden markov model state likelihood

机译:使用杂音可能性和隐马尔可夫模型状态可能性通过心音信号对心脏疾病进行分类

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a new algorithm for cardiac disorder classification by heart sound signals. The algorithm consists of three steps: segmentation, likelihood computation and classification. In the segmentation step, the authors convert heart sound signals into mel-frequency cepstral coefficient features and then partition input signals into S1/S2 intervals by using a hidden Markov model (HMM). In the likelihood computation step, using only a period of heart sound signals, the authors compute the HMM 'state' likelihood and murmur likelihood. The 'state' likelihood is computed for each state of HMM-based cardiac disorder models, and the murmur likelihood is obtained by probabilistically modelling the energies of band-pass filtered signals for the heart pulse and murmur classes. In the classification step, the authors decided the final cardiac disorder by combining the state likelihood and the murmur likelihood by using a support vector machine. In computer experiments, the authors show that the proposed algorithm greatly improve classification accuracy by effectively reducing the classification errors for the cardiac disorder categories where the temporal murmur position plays an important role in detecting disorders.
机译:这项研究提出了一种新的算法,可以通过心音信号对心脏病进行分类。该算法包括三个步骤:分割,似然计算和分类。在分割步骤中,作者将心音信号转换为梅尔频率倒谱系数特征,然后使用隐马尔可夫模型(HMM)将输入信号划分为S1 / S2间隔。在似然计算步骤中,作者仅使用一段心音信号,即可计算HMM“状态”似然和杂音似然。对于基于HMM的心脏病模型的每种状态,都会计算“状态”可能性,而杂波可能性则是通过对心搏和杂音类别的带通滤波信号的能量进行概率建模而获得的。在分类步骤中,作者通过使用支持向量机将状态可能性和杂音可能性结合起来,从而确定了最终的心脏疾病。在计算机实验中,作者表明,该算法通过有效减少针对心脏杂乱类别的分类错误,从而大大提高了分类准确度,其中心脏杂音位置在检测杂乱中起着重要作用。

著录项

  • 来源
    《Signal Processing, IET》 |2012年第4期|p.326-334|共9页
  • 作者

    Kwak C.; Kwon O.-W.;

  • 作者单位

    Department of Control and Robot Engineering, Chungbuk National University, Cheongju, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号