首页> 外文期刊>Signal Processing, IET >Compensated robust least-squares estimator for target localisation in sensor network using time difference of arrival measurements
【24h】

Compensated robust least-squares estimator for target localisation in sensor network using time difference of arrival measurements

机译:使用到达时间差测量传感器网络中目标定位的补偿鲁棒最小二乘估计器

获取原文
获取原文并翻译 | 示例

摘要

A target localisation estimator based on time difference of arrival (TDOA) measurement is proposed. The localisation estimator is designed in the framework of the recently developed robust least-squares (RoLS) estimator, which provides an unbiased estimation result and can be implemented with a recursive filtering structure. However, when the RoLS estimator is applied to the localisation problem, its localisation performance depends on the knowledge of the stochastic information of the TDOA measurement. This dependency means that incorrectly given information causes localisation error. Therefore to complement the dependency of the given stochastic information of the TDOA measurement, we design a compensation procedure based on the constraints on the state variables of the estimator. The performance of the proposition under several cases of incorrectly given stochastic information is verified through computer simulation, and its filtering structure is compared with other existing localisation algorithms mathematically. In addition, the entire process of the proposed localisation estimator is derived as a recursive form for real-time applications.
机译:提出了一种基于到达时间差(TDOA)测量的目标定位估计器。本地化估计器是在最近开发的鲁棒最小二乘(RoLS)估计器的框架中设计的,该估计器提供了无偏估计结果,并且可以通过递归滤波结构实现。但是,当将RoLS估计器应用于定位问题时,其定位性能取决于TDOA测量的随机信息的知识。这种依赖性意味着错误地提供信息会导致定位错误。因此,为了补充TDOA测量的给定随机信息的依赖性,我们基于估计器状态变量的约束条件设计了一种补偿程序。通过计算机仿真验证了该命题在几种错误给出的随机信息情况下的性能,并将其过滤结构与其他现有的本地化算法进行了数学比较。另外,所提出的定位估计器的整个过程被导出为用于实时应用的递归形式。

著录项

  • 来源
    《Signal Processing, IET》 |2013年第8期|664-673|共10页
  • 作者单位

    Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong, Seodaemum-Gu, Seoul, Korea|c|;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号