首页> 外文期刊>Signal Processing, IET >Rao-Blackwellised particle filtering and smoothing for jump Markov non-linear systems with mode observation
【24h】

Rao-Blackwellised particle filtering and smoothing for jump Markov non-linear systems with mode observation

机译:带模式观测的跳跃Markov非线性系统的Rao-Blackwellised粒子滤波和平滑

获取原文
获取原文并翻译 | 示例

摘要

This study is concerned with the problem of filtering and fixed-lag smoothing for jump Markov non-linear systems when the mode information can be extracted from an image sensor. Based on the idea of Rao-Blackwellisation, the authors present a general theoretical framework to derive the recursive estimates by employing the particle filtering method. A suboptimal image-enhanced Rao-Blackwellised particle filter is proposed, in which the mode state is estimated by using random sampling and the continuous state as well as the relevant likelihood function are approximated as Gaussian distributions. The one-step fixed-lag smoothing result is also obtained for such systems with lagged mode observations. Performance comparison of the proposed algorithms with the existing methods is provided through a manoeuvring target tracking simulation study.
机译:当可以从图像传感器中提取模式信息时,该研究涉及跳跃马尔可夫非线性系统的滤波和固定滞后平滑问题。基于Rao-Blackwellisation的思想,作者提出了一个通用的理论框架,可以通过采用粒子滤波方法来推导递归估计。提出了一种次优图像增强的Rao-Blackwellised粒子滤波器,其中通过使用随机采样来估计模式状态,并将连续状态以及相关的似然函数近似为高斯分布。对于具有滞后模式观测值的此类系统,也可以获得单步固定滞后平滑结果。通过机动目标跟踪仿真研究提供了所提出算法与现有方法的性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号