首页> 外文期刊>Signal Processing, IET >Two-stage blind audio source counting and separation of stereo instantaneous mixtures using Bayesian tensor factorisation
【24h】

Two-stage blind audio source counting and separation of stereo instantaneous mixtures using Bayesian tensor factorisation

机译:使用贝叶斯张量分解的两阶段盲音频源计数和分离立体声瞬时混合物

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the authors address the tasks of audio source counting and separation for two-channel instantaneous mixtures. This goal is achieved in two steps. First, a novel scheme is proposed for estimating the number of sources and the corresponding channel intensity difference (CID) values. For this purpose, an angular spectrum is evaluated as a function of the ratio of the magnitude spectrogram of the two channels and the peak locations of that spectrum are obtained. In the second stage, a new approach is developed for extracting the individual source signals exploiting a Bayesian non-parametric modelling. The mean field variational Bayesian approach is applied for inferring the unknown parameters. Classification is then performed on the inferred active CID values to obtain the individual source magnitude spectrograms. This way, the number of spectral components used for modelling each source is found automatically from the data. The Bayesian approach is compared with the standard Kullback-Leibler non-negative tensor factorisation method to illustrate the effectiveness of Bayesian modelling. The performance of the source separation is measured by obtaining the existing metrics for multichannel blind source separation evaluation. The experiments are performed on instantaneous mixtures from the dev2 database.
机译:在本文中,作者解决了两通道瞬时混合音频源计数和分离的任务。该目标分两个步骤实现。首先,提出了一种新颖的方案来估计源的数量和相应的信道强度差(CID)值。为此,根据两个通道的幅度谱图之比评估角度光谱,并获得该光谱的峰值位置。在第二阶段,开发了一种新方法,用于利用贝叶斯非参数建模来提取单个源信号。应用平均场变贝叶斯方法来推断未知参数。然后,对推断出的活动CID值进行分类,以获得各个源幅度谱图。这样,可以从数据中自动找到用于建模每个光源的光谱分量的数量。将贝叶斯方法与标准Kullback-Leibler非负张量因子分解方法进行比较,以说明贝叶斯建模的有效性。通过获得用于多通道盲源分离评估的现有指标,可以测量源分离的性能。实验是对dev2数据库中的瞬时混合物进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号