首页> 外文期刊>Signal Processing, IET >Instantaneous fundamental frequency estimation of non-stationary periodic signals using non-linear recursive filters
【24h】

Instantaneous fundamental frequency estimation of non-stationary periodic signals using non-linear recursive filters

机译:使用非线性递归滤波器的非平稳周期信号瞬时基频估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm for estimating the instantaneous fundamental frequency of a noisy non-stationary periodic signal whose components are harmonically related. To this end, the authors’ propose a harmonic state-space model for the input signal and use it to derive an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). In this model, the input signal is characterised by a time-varying fundamental frequency and amplitude which is a practical assumption for real-world periodic signals. In contrast to most of existing methods such as short-time Fourier transform, the proposed algorithm does not use any windowing technique. Therefore the trade-off between time and frequency resolutions is less controversial and so can be used for real-time frequency tracking. It also reveals some fine and continuous variations in signal pitch such as Vibrato and Glissando. Simulation results show that the proposed algorithm performs well even when most of the signal energy is contained in the higher-order harmonics. The performance of the proposed algorithm using EKF, UKF and PF is also evaluated and the results are compared in diverse conditions.
机译:本文提出了一种算法,用于估计其成分是谐波相关的有噪声的非平稳周期信号的瞬时基频。为此,作者提出了一种针对输入信号的谐波状态空间模型,并使用它来导出扩展卡尔曼滤波器(EKF),无味卡尔曼滤波器(UKF)和粒子滤波器(PF)。在该模型中,输入信号的特征是时基频率和幅度随时间变化,这是现实世界中周期信号的实际假设。与大多数现有方法(例如短时傅立叶变换)相比,该算法不使用任何加窗技术。因此,时间分辨率和频率分辨率之间的权衡争议较小,因此可用于实时频率跟踪。它还揭示了信号音调的细微和连续变化,例如颤音和Glissando。仿真结果表明,即使大部分信号能量包含在高次谐波中,该算法仍然具有良好的性能。还评估了使用EKF,UKF和PF提出的算法的性能,并在不同条件下比较了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号