首页> 外文期刊>Signal processing >Estimation of the instantaneous amplitude and frequency of non-stationary short-time signals
【24h】

Estimation of the instantaneous amplitude and frequency of non-stationary short-time signals

机译:估计非平稳短时信号的瞬时幅度和频率

获取原文
获取原文并翻译 | 示例

摘要

We consider the modeling of non-stationary discrete signals whose amplitude and frequency are assumed to be nonlinearly modulated over very short-time duration. We investigate the case where both instantaneous amplitude (IA) and instantaneous frequency (IF) can be approximated by orthonormal polynomials. Previous works dealing with polynomial approximations refer to orthonormal bases built from a discretization of continuous-time orthonormal polynomials. As this leads to a loss of the orthonormal property, we propose to use discrete orthonormal polynomial bases: the discrete orthonormal Legendre polynomials and a discrete base we have derived using Gram-Schmidt procedure. We show that in the context of short-time signals the use of these discrete bases leads to a significant improvement in the estimation accuracy. We manage the model parameter estimation by applying two approaches. The first is maximization of the likelihood function. This function being highly nonlinear, we propose to apply a stochastic optimization technique based on the simulated annealing algorithm. The problem can also be considered as a Bayesian estimation which leads us to apply another stochastic technique based on Monte Carlo Markov Chains. We propose to use a Metropolis Hastings (MH) algorithm. Both approaches need an algorithm parameter tuning that we discuss according our application context. Monte Carlo simulations show that the results obtained are close to the Cramer-Rao bounds we have derived. We show that the first approach is less biased than the second one. We also compared our results with the higher ambiguity function-based method. The methods proposed outperform this method at low signal to noise ratios (SNR) in terms of estimation accuracy and robustness. Both proposed approaches are of a great utility when scenarios in which signals having a small sample size are non-stationary at low SNRs. They provide accurate system descriptions which are achieved with only a reduced number of basis functions.
机译:我们考虑对非平稳离散信号进行建模,其振幅和频率被假定为在很短的时间内进行非线性调制。我们研究了瞬时振幅(IA)和瞬时频率(IF)都可以通过正交多项式近似的情况。以前处理多项式逼近的工作涉及从连续时间正交多项式离散化而构建的正交基础。由于这会导致正交特性的损失,我们建议使用离散正交标准多项式基:离散正交标准勒让德多项式和我们使用Gram-Schmidt程序导出的离散基。我们表明,在短时信号的情况下,使用这些离散基​​数可以显着提高估计精度。我们通过应用两种方法来管理模型参数估计。首先是似然函数的最大化。该函数是高度非线性的,我们建议基于模拟退火算法应用随机优化技术。这个问题也可以看作是贝叶斯估计,这导致我们应用基于蒙特卡洛马尔可夫链的另一种随机技术。我们建议使用Metropolis Hastings(MH)算法。两种方法都需要我们根据应用程序上下文讨论的算法参数调整。蒙特卡洛模拟显示,所获得的结果接近于我们得出的Cramer-Rao边界。我们表明,第一种方法比第二种方法有更少的偏见。我们还将我们的结果与基于更高歧义函数的方法进行了比较。在估计精度和鲁棒性方面,所提出的方法在低信噪比(SNR)方面优于该方法。当具有小样本大小的信号在低SNR处不稳定时,这两种建议的方法都具有很大的实用性。它们提供了准确的系统描述,仅需减少基本功能即可实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号