首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Joint Sequential Target Estimation and Clock Synchronization in Wireless Sensor Networks
【24h】

Joint Sequential Target Estimation and Clock Synchronization in Wireless Sensor Networks

机译:无线传感器网络中的联合顺序目标估计和时钟同步

获取原文
获取原文并翻译 | 示例

摘要

We propose a method to jointly estimate sequential target states and network synchronization status based on observations obtained by an unsynchronized wireless sensor network. We build an unsynchronized multi-sensor state-space model to connect asynchronous observations with target state transition. Under the built model, we solve the joint estimation problem via the expectation-maximum (EM) algorithm, assuming known temporal order of sensor clocks. Based on the solution and a Bayesian inference method developed to learn temporal order from observations, we solve the joint estimation problem in a distributed manner, assuming unknown temporal order. We use Monte Carlo methods to approximate our solutions, in order to account for nonlinear models and non-Gaussian noise. Moreover, we develop a recursive and parallel algorithm to compute the EM covariance matrix under Monte Carlo approximations. Numerical examples are presented to demonstrate the performance of the proposed method, and show that sequential target estimation benefits from the concurrent clock synchronization.
机译:我们提出了一种方法,可以根据非同步无线传感器网络获得的观察结果,共同估算顺序目标状态和网络同步状态。我们建立了一个非同步的多传感器状态空间模型,以将异步观测与目标状态转换联系起来。在构建的模型下,假设传感器时钟的时间顺序已知,我们将通过最大期望(EM)算法解决联合估计问题。基于解决方案和贝叶斯推断方法,该方法经过开发以从观测中学习时间顺序,我们假设未知的时间顺序,以分布式方式解决联合估计问题。为了解决非线性模型和非高斯噪声,我们使用蒙特卡洛方法来近似我们的解决方案。此外,我们开发了一种递归并行算法,以在蒙特卡洛近似下计算EM协方差矩阵。数值例子表明了该方法的性能,并表明顺序目标估计受益于并发时钟同步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号