首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Position-Constrained Stochastic Inference for Cooperative Indoor Localization
【24h】

Position-Constrained Stochastic Inference for Cooperative Indoor Localization

机译:位置受限的随机推断用于合作室内定位

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of distributed cooperative localization in wireless networks, i.e., nodes without prior position knowledge (agents) wish to determine their own positions. In non-cooperative approaches, positioning is only based on information from reference nodes with known positions (anchors). However, in cooperative positioning, information from other agents is considered as well. Cooperative positioning requires encoding of the uncertainties of agents' positions. 'lb cope with that demand, we consider stochastic inference for localization, which inherently takes the position uncertainties of agents into consideration. Generally, stochastic inference comes at the expense of high costs in terms of computation and information exchange. To relax the requirements of inference algorithms, we propose the framework of position--constrained stochastic inference, in which we first confine the positions of nodes to constrained regions. These regions assist inference algorithms to concentrate on the important areas of the sample space rather than the entire sample space. In contrast to many state-of-the-art approaches, our approach does not require prior knowledge on the positions of agents. We show through simulations that increased localization accuracy, reduced computational complexity, and quicker convergence can be achieved when compared to state-of-the-art non-constrained inference algorithms.
机译:我们解决了无线网络中的分布式合作定位的问题,即,没有事先位置知识(代理)的节点希望确定它们自己的位置。在非合作方式中,定位仅基于来自具有已知位置(锚点)的参考节点的信息。但是,在合作定位中,也要考虑来自其他代理的信息。合作定位需要编码代理商位置的不确定性。为了应对这种需求,我们考虑了本地化的随机推断,这固有地考虑了代理商的位置不确定性。通常,随机推理是以计算和信息交换方面的高成本为代价的。为了放宽推理算法的要求,我们提出了位置受限的随机推理框架,在该框架中,我们首先将节点的位置限制在受限区域内。这些区域有助于推理算法将精力集中在样本空间的重要区域上,而不是整个样本空间上。与许多最新方法相反,我们的方法不需要事先了解代理人的职位。通过仿真显示,与最新的无约束推理算法相比,可以提高定位精度,降低计算复杂度并加快收敛速度​​。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号