首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Distributed Bernoulli Filtering Using Likelihood Consensus
【24h】

Distributed Bernoulli Filtering Using Likelihood Consensus

机译:使用似然性共识的分布式伯努利滤波

获取原文
获取原文并翻译 | 示例

摘要

We consider the detection and tracking of a target in a decentralized sensor network. The presence of the target is uncertain, and the sensor measurements are affected by clutter and missed detections. The state-evolution model and the measurement model may be nonlinear and non-Gaussian. For this practically relevant scenario, we propose a particle-based distributed Bernoulli filter (BF) that provides to each sensor approximations of the Bayes-optimal estimates of the target presence probability and the target state. The proposed method uses all the measurements in the network while requiring only local intersensor communication. This is enabled by an extension of the likelihood consensus method that reaches consensus on the likelihood function under both the target presence and target absence hypotheses. We also propose an adaptive pruning of the likelihood expansion coefficients that yields a significant reduction of intersensor communication. Finally, we present a new variant of the likelihood consensus method that is suited to networks containing star-connected sensor groups. Simulation results show that in challenging scenarios, including a heterogeneous sensor network with significant noise and clutter, the performance of the proposed distributed BF approaches that of the optimal centralized multisensor BE We also demonstrate that the proposed distributed BF outperforms a state-of-the-art distributed BF at the expense of a higher amount of intersensor communication.
机译:我们考虑在分散式传感器网络中检测和跟踪目标。目标的存在是不确定的,并且传感器的测量值会受到混乱和漏检的影响。状态演化模型和测量模型可以是非线性的和非高斯的。对于这种实际相关的情况,我们提出了一种基于粒子的分布式伯努利滤波器(BF),该滤波器为每个传感器提供目标存在概率和目标状态的贝叶斯最优估计的近似值。所提出的方法使用网络中的所有测量,而仅需要本地传感器间通信。这是通过扩展可能性共识方法实现的,该方法在目标存在和目标缺失假设下都对似然函数达成了共识。我们还提出了对似然扩展系数的自适应修剪,以大幅减少传感器之间的通信。最后,我们提出了似然一致性方法的新变体,适用于包含星形连接的传感器组的网络。仿真结果表明,在具有挑战性的场景中,包括具有明显噪声和杂波的异构传感器网络,所提出的分布式BF的性能接近最佳集中式多传感器BE的性能。我们还证明了所提出的分布式BF优于当前的状态。在现有技术中,分布式BF的代价是需要大量的传感器间通信。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号