首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Filter Design for Autoregressive Moving Average Graph Filters
【24h】

Filter Design for Autoregressive Moving Average Graph Filters

机译:自回归移动平均图滤波器的滤波器设计

获取原文
获取原文并翻译 | 示例

摘要

In the field of signal processing on graphs, graph filters play a crucial role in processing the spectrum of graph signals. This paper proposes two different strategies for designing autoregressive moving average (ARMA) graph filters on both directed and undirected graphs. The first approach is inspired by Prony's method, which considers a modified error between the modeled and the desired frequency response. The second technique is based on an iterative approach, which finds the filter coefficients by iteratively minimizing the true error (instead of the modified error) between the modeled and the desired frequency response. The performance of the proposed algorithms is evaluated and compared with finite impulse response (FIR) graph filters, on both synthetic and real data. The obtained results show that ARMA filters outperform FIR filters in terms of approximation accuracy and they are suitable for graph signal interpolation, compression, and prediction.
机译:在图形信号处理领域,图形滤波器在处理图形信号频谱方面起着至关重要的作用。本文提出了两种在有向图和无向图上设计自回归移动平均(ARMA)图滤波器的策略。第一种方法是受Prony方法启发的,该方法考虑了建模和所需频率响应之间的修正误差。第二种技术基于迭代方法,该方法通过迭代地最小化建模频率响应和所需频率响应之间的真实误差(而不是修正误差)来找到滤波器系数。评估了所提出算法的性能,并与有限脉冲响应(FIR)图形滤波器进行了比较,无论是合成数据还是实际数据。获得的结果表明,ARMA滤波器在逼近精度方面胜过FIR滤波器,它们适用于图形信号插值,压缩和预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号