首页> 外文期刊>IEEE Transactions on Signal Processing >Autoregressive Moving Average Graph Filtering
【24h】

Autoregressive Moving Average Graph Filtering

机译:自回归移动平均图滤波

获取原文
获取原文并翻译 | 示例

摘要

One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogs of classical filters, but intended for signals defined on graphs. This paper brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which are able to approximate any desired graph frequency response, and give exact solutions for specific graph signal denoising and interpolation problems. The philosophy to design the ARMA coefficients independently from the underlying graph renders the ARMA graph filters suitable in static and, particularly, time-varying settings. The latter occur when the graph signal and/or graph topology are changing over time. We show that in case of a time-varying graph signal, our approach extends naturally to a two-dimensional filter, operating concurrently in the graph and regular time domain. We also derive the graph filter behavior, as well as sufficient conditions for filter stability when the graph and signal are time varying. The analytical and numerical results presented in this paper illustrate that ARMA graph filters are practically appealing for static and time-varying settings, as predicted by theoretical derivations.
机译:图上信号处理领域的基石之一是图滤波器,它是经典滤波器的直接类似物,但用于图上定义的信号。本文对分布式图形过滤问题提出了新的见解。我们设计了一系列自回归移动平均(ARMA)递归,它们能够近似任何所需的图形频率响应,并为特定的图形信号去噪和插值问题提供了精确的解决方案。独立于基础图来设计ARMA系数的原理使ARMA图滤波器适合于静态设置,尤其是时变设置。后者在图形信号和/或图形拓扑随时间变化时发生。我们表明,在时变图信号的情况下,我们的方法自然扩展到二维滤波器,并在图和规则时域中同时运行。我们还推导了图形滤波器的行为,以及当图形和信号随时间变化时滤波器稳定的充分条件。本文提供的分析和数值结果表明,如理论推导所预测的那样,ARMA图形滤波器实际上对静态和时变设置具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号