首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Identifying Influential Links for Event Propagation on Twitter: A Network of Networks Approach
【24h】

Identifying Influential Links for Event Propagation on Twitter: A Network of Networks Approach

机译:在Twitter上识别事件传播的有影响力的链接:一种网络方法

获取原文
获取原文并翻译 | 示例

摘要

Patterns of event propagation in online social networks provide novel insights on the modeling and analysis of information dissemination over networks and physical systems. This paper studies the importance of follower links for event propagation on Twitter. Three recent event propagation traces are collected with the Twitter user language field being used to identify the Network of Networks (NoN) structure embedded in the Twitter follower networks. We first formulate event propagation on Twitter as an iterative state equation, and then propose an effective score function on follower links accounting for the containment of event propagation via link removals. Furthermore, we find that utilizing the NoN model can successfully identify influential follower links such that their removals lead to a remarkable reduction in event propagation on Twitter follower networks. Experimental results find that the between-network follower links, though only account for a small portion of the total follower links, are crucial to event propagation on Twitter.
机译:在线社交网络中事件传播的模式为通过网络和物理系统进行的信息传播的建模和分析提供了新颖的见解。本文研究了跟随者链接对于Twitter上事件传播的重要性。收集了三个最近的事件传播轨迹,其中Twitter用户语言字段用于标识嵌入在Twitter关注者网络中的网络网络(NoN)结构。我们首先在Twitter上将事件传播表述为迭代状态方程,然后在关注者链接上提出有效得分函数,以考虑通过链接删除来控制事件传播。此外,我们发现利用NoN模型可以成功地识别有影响力的关注者链接,从而将其删除导致Twitter关注者网络上事件传播的显着减少。实验结果发现,网络间的追随者链接尽管仅占追随者链接总数的一小部分,但对于Twitter上的事件传播至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号